在人工智能不断演进的当下,构建强大且功能丰富的 AI 智能体成为开发者们的重要目标。模型上下文协议(Model Context Protocol,MCP)和 PydanticAI 框架在这一领域发挥着关键作用。MCP 为 AI 智能体连接外部资源和工具提供了标准化途径,而 PydanticAI 则致力于让生成式 AI 在生产级应用中的开发更加便捷。然而,目前 PydanticAI 框架原生并不支持 MCP,本文将深入探讨如何突破这一限制,实现在 PydanticAI 智能体中使用 MCP 工具,为开发者打造功能更强大的 AI 应用提供指导。
一、MCP 与 PydanticAI 框架概述
(一)MCP 介绍
MCP 是 Anthropic 推出的一项重要举措,旨在定义一种标准化方式,使 AI 智能体能够连接到外部上下文。这一上下文涵盖了丰富的内容,包括提供信息的资源以及执行操作的工具 。其核心架构由 MCP 服务器和 MCP 客户端组成。MCP 服务器负责提供一系列工具和资源,例如,它可以连接到 Slack、Google Drive、Github 等平台,或是各种数据库,为智能体获取数据、执行操作提供支持。MCP 客户端则扮演着连接者的角色,它能够与一个或多个 MCP 服务器建立连接,获取服务器上的功能,并将这些功能传递给 AI 智能体使用。
MCP(MCP(Model Context Protocol):重塑LLM与外部数据交互的新篇章) 的设计目标之一是消除提供上下文或工具的服务与需要访问它们的 AI 框架或模型之间的耦合。通过这种标准化的协议,不同的服务可以独立发展,而 AI 智能体可以方便地接入各种资源,提高了系统的灵活性和可扩展性。例如,一个专注于文本处理的 AI 智能体可以通过 MCP 轻松连接到 Google Drive 获取文档数据,而无需关心 Google Drive 的具体实现细节,这大大降低了开发的复杂性。
(二)PydanticAI 框架
PydanticAI是一个基于 Python 的智能体框架,它的出现为生成式 AI 在生产级应用开发中带来了便利。相较于像 LangChain 这样的框架,PydanticAI 更加直观和灵活。它在数据验证、模型构建以及与其他 Python 库的集成方面表现出色,能够帮助开发者更高效地构建复杂的 AI 智能体应用。
PydanticAI 框架允许开发者轻松定义 AI 智能体的行为、依赖项以及与外部服务的交互方式。它基于 Pydantic 的数据验证机制,使得代码更加健壮,能够有效处理数据类型错误和异常情况。例如,在构建一个对话式 AI 应用时,开发者可以使用 PydanticAI 轻松定义对话的输入和输出格式,确保数据的一致性和准确性。
然而,目前 PydanticAI 框架存在一个局限性,即它原生不支持 MCP。这意味着开发者无法直接利用 MCP 提供的丰富功能和资源来增强 PydanticAI 智能体的能力。要实现这一目标,需要采取一些额外的步骤和技术手段来完成二者的集成。
二、准备 MCP 服务器
在使用 MCP 工具与 PydanticAI 智能体集成时,首先要准备好 MC