2.4 投影与二次型

在赫尔伯特空间,投影可以确定二次型的最小化,在2.4.1中会简短说明。但是在Krein space,我们仅仅断言投影可以得到二次型的驻点,然后证明该驻点是极值。这会在2.4.1中阐述,我们叫做随机最小化问题。在2.4.2中,我们会研究一个紧密相关的二次型,它产生与我们所谓的部分等价确定性最小化问题中。

目录

2.4.1 Hilbert空间与Krein空间中的随机最小化

定理2.4.1  误差Gramian矩阵的驻点(Krein空间)

 推论2.4.1(最小值条件)

2.4.2 部分等效的确定性问题

定理2.4.2 (确定性问题的驻点)

 推论2.4.2(最小值的条件)

备注:从确定性问题到Krein空间问题的思路

总结

2.4.3 可供选择的最小化的惯性指数条件

引理2.4.3  确定问题最小化的惯性指数条件


2.4.1 Hilbert空间与Krein空间中的随机最小化

考虑一个拥有不定内积的Krein空间中的元素集和,设

 是Krein空间中的一些列向量的集和,考虑的任意线性组合,称为,这里,一个自然的研究对象是误差Gramian矩阵 

 为了引起后面的讨论,我们先假设属于一个均值为0的Hilbert空间,而且他们的协方差已知。在这种情况下(E表示期望值,H表示Hilbert空间),P(k)为估计的均方误差矩阵

 总所周知,使P(k)最小的线性均方估计由z在y上的投影给出

 然而,这个结论在Krein空间中并不成立,因为

 上式的结果可以从Krein空间定义的第三条得到。

定义2.4.1   驻点的定义

引理2.4.1   最小化的条件   二阶导大于0.

定理2.4.1  误差Gramian矩阵的驻点(Krein空间)

非奇异,是z在y上投影的唯一系数矩阵

 得到误差Gramian矩阵的唯一驻点

 并且,P(k)在驻点的值为

 推论2.4.1(最小值条件)

在定理2.4.1中,是P(k)唯一的最小值,当且仅当

 也就是说,不仅非奇异,而且正定。

总结一下目前所展示的内容。每当我们确定一个投影(z在y上的),我们实际上是将(1.3)中由(z,y)的Gramian矩阵和交叉Gramian矩阵构造的矩阵二次型平稳化(或者最小化,如果可以满足正定的条件)。许多读者已经熟悉了Hilbert空间中投影使矩阵二次型(即误差Gramian矩阵)最小化的事实。我们已经证明了 这个命题的Krein空间泛化。、

2.4.2 部分等效的确定性问题

 现在我们考虑所谓的部分等效确定性问题。我们称它为确定性的,因为它涉及到在普通复变量(而不是Krein空间的复变量)上计算某个标量二次形式的驻点。此外,由于其解(即驻点)由一个适当定义的Krein空间向量在另一个空间上的投影的相同表达式给出,而最小值的条件与Krein空间投影的条件不同,因此叫部分等价。

 为此,考虑一个标量二次型

 其中中间的矩阵为定理(2.4.1)中Gramian矩阵的逆。假设我们在给定的y下寻找稳定的元素

(当然,我们不仅假设是非奇异的,而且假设(1.4)中的块矩阵也是非奇异的) 

参考2.4.1节中关于Hilbert空间的描述,这个问题的动机是基于这样一个事实。如果对于联合高斯随机向量(z,y)。线性最小均方估计可以被表示为条件密度的条件均值。因此,研究(z,y)非高斯的二次型问题

定理2.4.2 (确定性问题的驻点)

 假设是和(1.4)中的块矩阵是非奇异的。

1、在z上的驻点为

 2、在驻点处的值为

 推论2.4.2(最小值的条件)

 在定理2.4.2中,确定的唯一的最小值,当且仅当

备注:从确定性问题到Krein空间问题的思路

备注1:比较定理2.4.1和2.4.2可以发现如(1.4)所示的标量二次型的驻点Z0的计算等式,与定理2.4.1中的Krein空间中的投影算式完全相同。但是,定理2.4.2中不是在Krein空间中得到的。z和y只是欧几里得空间的向量,而且也不是z在y上的投影。我们在2.4.2中展示的是通过正确定义如(1.4)的标量二次型,利用系数矩阵,可以认为其来自Krein空间向量(z,y)的Gramian和误差Gramian矩阵。然后我们就可以使用定理2.4.1计算驻点了。

(备注1说明了解决H无穷滤波的思路,将确定性的二次型等效为一个Krein空间问题,再解决)

备注2:然鹅,尽管通过相同的计算找到了P(k)和的驻点,但是这两种形式不一定同时有最小值。因为它们最小值存在的条件不一样(推论2.4.1和推论2.4.2)。这是与经典Hilbert空间最大的不同,在Hilbert空间中,有

 如果上式成立,则定理2.4.1与2.4.2有相同的结果(即推论2.4.1和推论2.4.2的条件同时成立)。

总结

本节给出的结果非常重要,在下表中总结。简而言之,对于任意的确定性二次型,我们可以构建一个部分等效的Krein空间模型{z,y},误差Gramian矩阵由的中间矩阵的逆给出,这样在z上的驻点可以通过Krein空间中z在y上的投影计算。而且,在z上有最小值的条件可以通过检测Krein空间Gramian矩阵的正性得到。(这是我们在各种H无穷、博弈论、自适应滤波问题中使用的关键事实,因为它们都可能与不等二次型有关)

2.4.3 可供选择的最小化的惯性指数条件

在很多情况下,直接计算确定问题(Hilbert)的最小化条件的正定性是很复杂的。但是计算惯性指数(特征值为正或负的个数)是比较简单地

引理2.4.3  确定问题最小化的惯性指数条件

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值