1.2 引入不定度量空间的动机——有限时域H2/H∞滤波

在本节中,通过回顾H2/H∞状态空间理论的一些结果来引入Krein空间(不定度量空间)

目录

1.2.1 状态空间估计

 H2 方法:随机扰动过程

问题1.2.1(H2估计问题)

定理1.2.1(卡尔曼滤波)

 H∞方法:确定扰动过程

问题1.2.2(次优 H∞估计问题)

 重述问题1.2.2

 定理1.2.2(有限时域H∞滤波)

 H2与H∞滤波的比较

 H∞问题的Krein空间解法


1.2.1 状态空间估计

考虑一个时变系统

上式中x,y分别为状态与输出,u和v分别为过程噪声与输出噪声。F,G,H为适当维度的矩阵。

估计状态的任意线性组合:

 是已知的,观测值为,使用

 表示基于给定观测值{yn}(n=0~i)的状态估计,定义状态估计误差:

估计的目标是构建一个状态估计使滤波误差序列足够“小”。一个常用的度量是: 

 H2 方法:随机扰动过程

 在H2的方法中,我们假设未知扰动是零均值,方差已知的噪声。假设方差为

 当初始状态和扰动是零均值的随机变量,(1.1)中的其他量(状态,输出)也是一样的。

        特别是滤波误差(1.3)也是一个随机变量。因此,H2估计的目标是寻找一个线性估计来最小化滤波误差的期望。精确的表述如下。

问题1.2.1(H2估计问题)

考虑状态空间如(1.1)与假设(1.4)。找到一个线性估计最小化滤波误差期望。 

 上述问题的解就是卡尔曼滤波器(Kalman filter)。

定理1.2.1(卡尔曼滤波)

 问题1.2.1的解为

 满足卡尔曼滤波迭代方程:

 P满足如下黎卡提方程:

 H∞方法:确定扰动过程

 H无穷方法是假设扰动是未知但是非随机的,因此无法谈论期望值或者尝试像H2那样最小化残差。相反,可以考虑一个归一化的代价函数(假设我们考虑滤波误差能量函数作为最小化的代价函数)。

可以把上述代价函数理解为从未知扰动项(分母上的各项)到滤波误差项的能量增益。我们可以很清晰的看到如果(1.8)的比率很小的话,说明滤波的效果好,反之亦然。然鹅,(1.8)的结果依赖于未知的扰动项。因此,我们考虑最坏的情况。

这表示从未知扰动项(分母上的各项)到滤波误差项的能量增益的最糟糕的情况。H∞估计的目标是就是最小化这个最坏情况下的能量增益。关键在于得到的估计值对于扰动的变化是稳健的,因为没有对扰动进行统计假设,而且我们对最坏的情况有了防范。然而,这样得到的估计量可能过于保守。

         结果表明只有少数情况下,(1.9)可以显式最小化。因此,我们通常放宽最小化条件,考虑次优问题。

问题1.2.2(次优 H∞估计问题)

考虑标准的状态空间模型(1.1),给定一个标量。确定是否有可能用作为最坏情况能量增益的界限:即是否能找到一个估计满足:

         在说明次优H∞问题之前,稍微详细的研究下问题的结构是有用的。注意(1.10)暗示对于非零的,我们必须要有

 

 此外,(1.11)暗示着对于所有的 ,我们一定要有:

 如果都是0,那么显而易见一定也是0。因此,我们只考虑其为非0序列的情况

 重述问题1.2.2

 给定标量,则(1.10)满足当且仅当存在序列

 使得对于所有复杂向量,所有序列,所有的非0序列,标量二次型被定义为

 满足 

 注意,不定二次型也可以写成下面的形式

 我们可以看到H无穷滤波的解决方法与保证不定二次型的正性联系在一起。这也表明在这个问题中引入某些不定度量空间也许是有益的。事实上,在我们引用上述H无穷滤波的解决方案后,这将变得更加明显。

 定理1.2.2(有限时域H∞滤波)

 一个水平为的H∞滤波器存在,当且仅当矩阵

有相同的惯性指数对于所有的,Pj满足黎卡提方程

在这种情况下,一个可能的 H∞估计为

 满足迭代

 H2与H∞滤波的比较

 定理1.2.2的解看起来与定理1.2.1中卡尔曼滤波的解非常相似,只有黎卡提递归方程(1.17)与卡尔曼滤波(1.7)不同,因为:

  1. H∞中不定“协方差”矩阵
  2. (对估计状态的选择)进入黎卡提递归方程
  3. H∞增加了额外的条件,滤波器想要存在,条件必须满足。在卡尔曼滤波中Li不存在而且Pi是半正定的,因此(1.16)是直接的。

        的出现意味着对状态向量的H∞估计的第一部分不是对所有向量的 H∞估计的第一部分(因为前者,而后者)。这与H2的情况非常不同,在H2中,对状态的任何线性组合的估计都会是状态估计的线性组合。

        事实是我们有不定的“协方差”而且进入了H∞估计问题的解中,因此,将二次型写成(1.15)的形式就很自然了。(1.15)中,都出现了。然而令人惊讶的是,确定性H∞问题的解与随机H2问题的解具有相同的类卡尔曼滤波器结构。唯一的区别是H∞问题中,解的存在需要一个附加的惯性条件。

 H∞问题的Krein空间解法

 具体的内容将在第二章与第三章给出。这里简要概述这一方法

        我们的方法是确保二次型(1.15)是严格正的。首先,我们需要确保(1.15)在上有最小值。其次,我们需要选择使(1.15)在最小值处是严格正的

        原则上,这两个步骤都可以用代数方法解决,例如,使用动态规划获得递归解。然而,代数方法过于复杂,这可能就是为什么目前 H∞问题通常以其他各种方法解决。在随机H2问题中,递归卡尔曼滤波解可以通过几何参数得到:在随机变量的希尔伯特空间中使用投影来最小化(1.5),通过引入创新过程(innovation process),递归解很容易得到。(参考3.3.1节 或者 任意关于卡尔曼滤波的教材)

         H∞解中出现的卡尔曼滤波器递归的形式表明可以使用类似的方法解决H无穷问题。问题在于确定性H无穷问题中没有Hilbert空间(由于的存在)。然而,在2.4.2节中我们将会定义一个部分等效的向量空间,该空间不是Hilbert空间而是一个特殊的不定空间,称作Krein空间,它允许我们解决原来的确定性问题。Krein空间与Hilbert空间有些基础的不同;特别地,它们可以包含长度为零的非零向量(叫做(neutral)中性向量),以及包含与子空间中所有向量正交的非零向量的子空间(这样的子空间叫做(degenerate),这样的向量叫做(isotropic)各向同性)。这些事实的结果是,在Krein空间中,投影不一定总是存在,即使他们存在,它们仅仅使一个二次型平稳化(而不一定使其最小化)。当投影存在的时候,依然可以使用一般的卡尔曼滤波递归计算,但是需要额外计算附加的惯性条件。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值