AIGC实战——多模态模型DALL.E 2

本文介绍了DALL.E 2模型,这是一个基于预训练的CLIP模型和扩散先验的文本生成图像模型。通过文本编码器、先验模型和解码器,DALL.E 2能够生成与文本提示相符的逼真图像。文章探讨了模型架构、各个组件的作用,以及先验模型的重要性,并展示了模型的应用和限制。
摘要由CSDN通过智能技术生成

0. 前言

DALL.E 2OpenAI 设计用于文本生成图像的生成模型。该模型的第一个版本 DALL.E2021 年发布,引起了对生成多模态模型的广泛关注。在本节中,我们将介绍该模型的第二个版本 DALL.E 2,该模型于 2022 年发布,DALL.E 2 进一步促使我们了解人工智能 (Artificial Intelligence, AI) 解决多模态问题的能力。它不仅在学术上具有重要意义,同时迫使我们思考 AI 创造性过程中的角色问题,这种制造性问题一直以来被认为是人类独有的能力。

1. 模型架构

为了了解 DALL.E 2 的工作原理,我们首先必须了解其整体架构,如下图所示。

模型架构

我们需要了解以下三个关键组件:文本编码器 (Text encoder)、先验模型 (Prior) 和解码

评论 64
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值