GNSS定位原理梳理——观测方程

GPS接收机描述的观测值包括伪码 与 相位,正常双频情况下会有5类观测值:L1 L2 P1 P2 CA。

其中,L1与L2为相位,P1,P2,CA都是伪码。

观测方程描述的是 观测值 与实际距离(导航卫星与接收机)的关系

其中,j代表GPS卫星序号,ρ代表实际距离,t代表导航卫星钟差,tr为接收机钟差,I代表电离延迟,N代表整周模糊度,λ代表波长,ξ代表测量误差。

一般来讲,导航卫星钟差为已知,IGS会发布精密钟差文件,但是BD没有,没有的话也可以拟合,拟合的过程是用GPS求出接收机钟差,然后得到BD导航卫星的钟差。GPS钟差一般1E-3 或者1E-4量级。

电离层通过双频消电离层组合消除影响。

测量误差包括 多径,pco,pcv,相位噪声,至于接收机以及导航卫星的电路延迟一般不会考虑,直接拟合在噪声里面了。

几何学定位的观测方程就基于以上,动力学就更多一点动力学部分。

定位算法主要包括最小二乘与卡尔曼滤波。

 

### GNSS定位基本原理解释 #### 卫星与地面站通信机制 GNSS系统依赖于一组绕地球轨道运行的人造卫星。这些卫星持续向地面发射含有时间和位置信息的无线电信号[^4]。 #### 测距方法 当接收设备接收到至少四颗不同卫星发出的时间戳记信号之后,能够依据电磁波传播速度(即光速\( c \approx 300,000\ km/s\)),计算出从每颗卫星至接收器间的距离。此过程基于简单的物理公式: \[ d = c * (t_{satellite} - t_{receiver}) \] 其中 \(d\) 表示测得的距离;\(c\) 是光速常量;而 \(t_{satellite}\) 和 \(t_{receiver}\),分别代表卫星发送时刻以及接收端记录下的到达时间差值[^1]。 #### 空间几何关系求解坐标 为了精确定位某一点的具体地理位置,在三维空间内需要三个独立方向上的约束条件——通常由来自三颗以上卫星的数据提供。利用上述提到的距离测量结果构建球体模型,并找到它们相交之处即可得到目标点的大致经纬度高度参数。然而考虑到钟差等因素影响,实践中往往还需要引入第四颗甚至更多卫星来进行更精准校正[^5]。 ```python import math def calculate_position(satellites_data): """ 计算给定卫星数据集中的未知站点位置 参数: satellites_data : list of tuples [(x,y,z,t), ...] 每个元组表示一颗卫星的位置(x,y,z)及时刻偏差(t) 返回: tuple: 地面接收装置所在处估计出来的地理坐标(X,Y,Z) """ # 这里仅作示意用途,具体实现需考虑多种因素并运用优化算法解决多维非线性方程组问题 estimated_coords = None # 实际上会通过迭代法或其他数值解析手段获得最优解 return estimated_coords ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值