光线追踪学习:Oren-Nayar Reflectance model

光线追踪学习之Oren-Nayar Reflectance model

Microfacet Models(微表面模型)

许多基于几何光学的表面反射和透射建模方法都是基于这样的想法:粗糙的表面可以被建模为小的微孔的集合。

下图显示了一个相对粗糙的表面和一个更光滑的微平面表面的横截面。为了区别,使用术语microsurface来描述microfacet表面和macrosurface来描述下面的光滑表面。

微平面表面模型通常由一个函数描述,该函数给出了微平面法线 n f n_f nf相对于表面法线 n n n的分布。

Microfacet model两个主要组成部分:

  • 表面的分布
  • 描述光如何从单个微表面散射的BRDF

主要的目标是,给出描述从这样一个表面散射的BRDF。下文的Oren-Nayar模型将为微表面视为Lambertian反射器。

为了计算这样一个模型的反射,需要考虑微表面层面的局部照明效应。微表面可能被另一个面遮挡,也可能位于相邻微面的阴影中,或者相互反射可能导致一个微表面反射的光比直接光照和low-level-microfacetBRDF所预测的多。特定的基于微表面的BRDF模型以不同的精确程度考虑了这些效应。一般的方法是尽可能地做出最好的近似,同时仍然获得一个容易评估的表达。

下图使用Microfacet-reflectance-model需要考虑的三个重要几何效应:

  • 遮蔽:由于另一个微平面的遮挡,观察者看不到感兴趣的微平面。
  • 阴影:光不会到达微平面。
  • 相互反射:光在到达观察者之前在微平面之间反射。

Oren-Nayar漫反射

Oren和Nayar开发了一种反射模型,该模型通过V形微面描述粗糙表面,V形微面由具有单个参数 σ \sigma σ的球面高斯分布描述。 σ \sigma σ表示,微面方位角的标准偏差。

在 V 形假设下,只考虑相邻的微平面就可以解释相互反射;Oren 和 Nayar 利用这一点推导出了一个 BRDF,它对凹槽集合的聚合反射进行建模。

产生的模型考虑了微面之间的阴影、掩蔽和相互反射,没有封闭形式的解决方案,因此他们找到了以下拟合它的近似值:
f r ( ω i , ω o ) = R π ( A + B ⋅ max ⁡ ( 0 , cos ⁡ ( ϕ i − ϕ o ) ) sin ⁡ α tan ⁡ β ) f_r\left( \omega _i,\omega _o \right) =\frac{R}{\pi}\left( A+B·\max \left( 0, \cos \left( \phi _i-\phi _o \right) \right) \sin \alpha \tan \beta \right) fr(ωi,ωo)=πR(A+Bmax(0,cos(ϕiϕo))sinαtanβ)
σ \sigma σ为弧度时,有:
A = 1 − σ 2 2 ( σ 2 + 0.33 ) B = 0.45 σ 2 σ 2 + 0.09 α = max ⁡ ( θ i , θ o ) β = min ⁡ ( θ i , θ o ) A=1-\frac{\sigma ^2}{2\left( \sigma ^2+0.33 \right)} \\ B=\frac{0.45\sigma ^2}{\sigma ^2+0.09} \\ \alpha =\max \left( \theta _i,\theta _o \right) \\ \beta =\min \left( \theta _i,\theta _o \right) A=12(σ2+0.33)σ2B=σ2+0.090.45σ2α=max(θi,θo)β=min(θi,θo)
σ \sigma σ:控制材料的粗糙度。 σ \sigma σ越大,材料越粗糙,背向散射越多。

与Lambert漫反射模型对比

Oren-Nayar BRDF是对理论Lambertian模型的改进,应用了纯漫反射微面的分布。Lambert表面是一个本身不受微面理论约束的实体,它不是“带凹槽的凹槽”。这是一个纯粹的理论概念,用于将微平面理论应用于无光泽表面。

oren-nayar的外观与漫反射材质非常相似,但在掠角处变暗较少(下文对比图中明显看出差异);这使得它使用于非常粗糙或多孔的表面,例如粘土和月球表面。

左边为Lambert反射模型,右边为 σ = 20 \sigma=20 σ=20oren-nayar反射模型

运用在光线追踪中

class oren_nayar : public material
{
public:
	oren_nayar(color c, double sigma) : albedo(make_shared<solid_color>(c))
	{
		double sigma2 = sigma * sigma;
		a = 1.0 - (sigma2 / (2.0 * (sigma2 + 0.33)));
		b = 0.45 * sigma2 / (sigma2 + 0.09);
	}

	oren_nayar(shared_ptr<texture> albedo_, double sigma) : albedo(albedo_)
	{
		double sigma2 = sigma * sigma;
		a = 1.0 - (sigma2 / (2.0 * (sigma2 + 0.33)));
		b = 0.45 * sigma2 / (sigma2 + 0.09);
	}

	bool scatter(const ray &r_in, const hit_record &rec, scatter_record &srec) const override
	{
		srec.is_specular = false;
		srec.attenuation = albedo->value(rec.u, rec.v, rec.p);
		srec.pdf_ptr = make_shared<cosine_pdf>(rec.normal);
		return true;
	}

    // eval brdf
	double scattering_pdf(const ray &r_in, const hit_record &rec, const ray &scattered) const override
	{
		vec3 wi = normalize(r_in.direction());
		vec3 wo = normalize(scattered.direction());

		double cosine = dot(rec.normal, wo);
		if (cosine < 0)
			cosine = 0;

		double sinThetaI = SinTheta(wi);
		double sinThetaO = SinTheta(wo);

		double maxCos = 0;
		if (sinThetaI > 1e-4 && sinThetaO > 1e-4)
		{
			double sinPhiI = SinPhi(wi);
			double cosPhiI = CosPhi(wi);
			double sinPhiO = SinPhi(wo);
			double cosPhiO = CosPhi(wo);
			double dCos = cosPhiI * cosPhiO + sinPhiI * sinPhiO;
			maxCos = std::max(0.0, dCos);
		}
		double sinAlpha, tanBeta;
		if (AbsCosTheta(wi) > AbsCosTheta(wo))
		{
			sinAlpha = sinThetaO;
			tanBeta = sinThetaI / AbsCosTheta(wi);
		}
		else
		{
			sinAlpha = sinThetaI;
			tanBeta = sinThetaO / AbsCosTheta(wo);
		}

		return ((a + b * maxCos * sinAlpha * tanBeta) * INV_PI * cosine);
	}
public:
	shared_ptr<texture> albedo;
	double a, b;
};

以下左图为lambert反射模型,右图为oren-nayar( σ = 20.0 \sigma=20.0 σ=20.0),光照主要来自环境光。

  • 右图整体感觉更加真实一点
参考资料:

Microfacet Models

由 3 参数 Oren-Nayar 模型预测的估计辐射度渲染的球体

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值