Hermitian Matrix可以对角化证明。 艾尔米特矩阵可以对角化

Schur triangularization: Let A A A be a n × n n\times n n×n matrix in the
complex field. We use λ 1 , λ 2 , ⋯   , λ n \lambda_1, \lambda_2, \cdots, \lambda_n λ1,λ2,,λn to
denote the eigenvalues of A A A. Then there is an unitary U U U such that
U ∗ A U = T U^{*}AU=T UAU=T, where U = ( x u 2 ⋯ u n ) U=\left( \begin{array}{cccc} x & u_2 & \cdots & u_n \end{array} \right) U=(xu2un), A x = λ 1 x Ax=\lambda_1x Ax=λ1x, ∥ x ∥ = 1 \|x\|=1 x=1 and T T T is an upper triangular
matrix with diagonal entries
t i i = λ i , i = 1 , 2 , ⋯   , n t_{ii}=\lambda_i, i=1,2,\cdots,n tii=λi,i=1,2,,n.(Note: U ∗ U^{*} U is the conjugate
transpose of U U U).

We can always contruct an unitary matrix from x x x. we name it as
U 1 = ( x u 1 ⋯ u n ) U_1=\left( \begin{array}{cccc} x & u_1 & \cdots & u_n \end{array} \right) U1=(xu1un). Then U 1 ∗ A U 1 = U 1 ∗ ( A x A u 1 ⋯ A u n ) = U 1 ∗ ( λ 1 x A u 1 ⋯ A u n ) = ( x ∗ u 2 ∗ ⋮ u n ∗ ) ( λ 1 x A u 1 ⋯ A u n ) = ( λ 1 x ∗ x x ∗ A u 1 ⋯ x ∗ A u n λ 1 u 2 ∗ x u 2 ∗ A u 2 ⋯ u 2 ∗ A u n ⋮ ⋮ ⋱ ⋮ λ 1 u n ∗ x u n ∗ A u 2 ⋯ u n ∗ A u n ) = ( λ 1 ⋆ 0 A 1 ) \left. \begin{aligned} U_1^{*}AU_1&=U_1^{*}\left( \begin{array}{cccc} Ax & Au_1 & \cdots & Au_n \end{array} \right)\\ &=U_1^{*}\left( \begin{array}{cccc} \lambda_1x & Au_1 & \cdots & Au_n \end{array} \right)\\ &=\left( \begin{array}{c} x^{*} \\ u^{*}_2 \\ \vdots \\ u_n^{*} \end{array} \right)\left( \begin{array}{cccc} \lambda_1x & Au_1 & \cdots & Au_n \end{array} \right)\\ &=\left( \begin{array}{cccc} \lambda_1x^{*}x & x^{*}Au_1 & \cdots & x^{*}Au_n \\ \lambda_1u_2^{*}x & u_2^{*}Au_2 & \cdots & u_2^{*}Au_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1u_n^{*}x & u^{*}_nAu_2 & \cdots & u_n^{*}Au_n \end{array} \right)\\ &=\left( \begin{array}{cc} \lambda_1 & \star \\ 0 & A_1 \end{array} \right) \end{aligned} \right. U1AU1=U1(AxAu1Aun)=U1(λ1xAu1Aun)=xu2un(λ1xAu1Aun)=λ1xxλ1u2xλ1unxxAu1u2Au2unAu2xAunu2AununAun=(λ10A1) It is not difficult to realize that the eigenvalues of
A 1 A_1 A1 are λ 2 , λ 3 , ⋯   , λ n \lambda_2, \lambda_3, \cdots, \lambda_n λ2,λ3,,λn.From the definition
of eigenvalues, λ 1 , λ 2 , ⋯   , λ n \lambda_1, \lambda_2, \cdots, \lambda_n λ1,λ2,,λn are the
solutions of the following polynomial. ∣ U ∗ A U − λ I ∣ = ∣ U ∗ A U − λ U ∗ U ∣ = ∣ U ∗ ∣ ∣ A − λ I ∣ ∣ U ∣ = ∣ A − λ I ∣ \left. \begin{aligned} |U^{*}AU-\lambda I|&=|U^{*}AU-\lambda U^{*}U|\\ &=|U^{*}||A-\lambda I||U|\\ &=|A-\lambda I| \end{aligned} \right. UAUλI=UAUλUU=UAλIU=AλI The last equation tells us that U ∗ A U U^{*}AU UAU and A A A have
same eigenvalues. ∣ U ∗ A U − λ I ∣ = ∣ ( λ 1 ⋆ 0 A 1 ) − λ I ∣ = ∣ λ 1 − λ ⋆ 0 A 1 − λ I n − 1 ∣ = ∣ λ 1 − λ ∣ ∣ A 1 − λ I n − 1 ∣ \left. \begin{aligned} |U^{*}AU-\lambda I|&= \left| \left( \begin{array}{cc} \lambda_1 & \star \\ 0 & A_1 \end{array} \right)-\lambda I \right|\\ &= \left| \begin{array}{cc} \lambda_1-\lambda & \star \\ 0 & A_1-\lambda I_{n-1} \end{array} \right|\\ &=|\lambda_1-\lambda||A_1-\lambda I_{n-1}| \end{aligned} \right. UAUλI=(λ10A1)λI=λ1λ0A1λIn1=λ1λA1λIn1 Finally,
∣ λ 1 − λ ∣ ∣ A 1 − λ I n − 1 ∣ = ∣ A − λ I ∣ |\lambda_1-\lambda||A_1-\lambda I_{n-1}|=|A-\lambda I| λ1λA1λIn1=AλI yields that
A 1 A_1 A1's eigenvalues are λ 2 , λ 3 , ⋯   , λ n \lambda_2, \lambda_3, \cdots, \lambda_n λ2,λ3,,λn.
Similarly, we can find an unitary matrix V 1 V_1 V1 such that
V 1 ∗ A 1 V 1 = ( λ 2 ⋆ 0 A 2 ) V_1^{*}A_1V_1=\left( \begin{array}{cc} \lambda_2 & \star \\ 0 & A_2 \end{array} \right) V1A1V1=(λ20A2) Using the notation U 2 = [ 1 ] ⊕ V 1 U_2=[1]\oplus V_1 U2=[1]V1 to denote
U 2 = [ 1 ] ⊕ V 1 = ( I 0 0 V 1 ) U_2=[1]\oplus V_1=\left( \begin{array}{cc} I & 0 \\ 0 & V_1 \end{array} \right) U2=[1]V1=(I00V1), we can easily find that U 2 ∗ U 1 ∗ A U 1 U 2 = ( λ 1 ⋆ ⋆ 0 λ 2 ⋆ 0 0 A 2 ) U_2^{*}U_1^{*}AU_1U_2=\left( \begin{array}{ccc} \lambda_1 & \star & \star \\ 0 & \lambda_2 & \star \\ 0 & 0 & A_2 \end{array} \right) U2U1AU1U2=λ100λ20A2 It is obvious that U 1 U 2 U_1U_2 U1U2 is another unitary matrix.
Continue this reduction to produce a series of U i U_i Ui. We get an unitary
matrix U = U 1 U 2 ⋯ U n U=U_1U_2\cdots U_n U=U1U2Un and U ∗ A U U^{*}AU UAU is upper triangular.

Lemma 1: Let A A A be partitioned as A = ( A 11 A 12 0 A 22 ) A=\left( \begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right) A=(A110A12A22), in which A 11 , A 22 A_{11}, A_{22} A11,A22 are square. Then A A A is normal if
and only if A 11 A_{11} A11 and A 22 A_{22} A22 are normal and A 12 = 0 A_{12}=0 A12=0.

Firstly, if A 11 , A 22 A_{11},A_{22} A11,A22 are normal and A 12 = 0 A_{12}=0 A12=0, we have A A ∗ = ( A 11 0 0 A 22 ) ( A 11 ∗ 0 0 A 22 ∗ ) = ( A 11 A 11 ∗ 0 0 A 22 A 22 ∗ ) = ( A 11 ∗ 0 0 A 22 ∗ ) ( A 11 0 0 A 22 )  becasue  ( A 11 A 11 ∗ = A 11 ∗ A 11 , A 22 A 22 ∗ = A 22 ∗ A 22 ) = A ∗ A \left. \begin{aligned} AA^{*}&=\left( \begin{array}{cc} A_{11} & 0 \\ 0 & A_{22} \end{array} \right)\left( \begin{array}{cc} A_{11}^{*} & 0 \\ 0 & A_{22}^{*} \end{array} \right)\\ &=\left( \begin{array}{cc} A_{11}A_{11}^{*} & 0 \\ 0 & A_{22}A_{22}^{*} \end{array} \right)\\ &=\left( \begin{array}{cc} A_{11}^{*} & 0 \\ 0 & A_{22}^{*} \end{array} \right)\left( \begin{array}{cc} A_{11} & 0 \\ 0 & A_{22} \end{array} \right)\text{ becasue } (A_{11}A_{11}^{*}=A_{11}^{*}A_{11}, A_{22}A_{22}^{*}=A_{22}^{*}A_{22})\\ &=A^{*}A \end{aligned} \right. AA=(A1100A22)(A1100A22)=(A11A1100A22A22)=(A1100A22)(A1100A22) becasue (A11A11=A11A11,A22A22=A22A22)=AA If A A A is normal, we get A A ∗ = ( A 11 A 11 ∗ + A 12 A 12 ∗ A 12 A 22 ∗ A 22 A 12 ∗ A 22 A 22 ∗ ) \left. \begin{aligned} AA^{*}&=\left( \begin{array}{cc} A_{11}A_{11}^{*}+A_{12}A_{12}^{*} & A_{12}A_{22}^{*} \\ A_{22}A_{12}^{*} & A_{22}A_{22}^{*} \end{array} \right)\\ \end{aligned} \right. AA=(A11A11+A12A12A22A12A12A22A22A22) and A ∗ A = ( A 11 ∗ A 11 A 11 ∗ A 12 A 12 ∗ A 11 A 12 ∗ A 12 + A 22 ∗ A 22 ) \left. \begin{aligned} A^{*}A=\left( \begin{array}{cc} A_{11}^{*}A_{11} & A_{11}^{*}A_{12} \\ A_{12}^{*}A_{11} & A_{12}^{*}A_{12}+A_{22}^{*}A_{22} \end{array} \right) \end{aligned} \right. AA=(A11A11A12A11A11A12A12A12+A22A22) Because A A A is normal, it is easy to see that
A 11 ∗ A 11 = A 11 A 11 ∗ + A 12 A 12 ∗ A_{11}^{*}A_{11}=A_{11}A_{11}^{*}+A_{12}A_{12}^{*} A11A11=A11A11+A12A12 and it follows
that t r a c e ( A 11 ∗ A 11 ) = t r a c e ( A 11 A 11 ∗ + A 12 A 12 ∗ ) = t r a c e ( A 11 A 11 ∗ ) + t r a c e ( A 12 A 12 ∗ ) = t r a c e ( A 11 ∗ A 11 ) + t r a c e ( A 12 A 12 ∗ ) \left. \begin{aligned} trace(A_{11}^{*}A_{11})&=trace(A_{11}A_{11}^{*}+A_{12}A_{12}^{*})\\ &=trace(A_{11}A_{11}^{*})+trace(A_{12}A_{12}^{*})\\ &=trace(A_{11}^{*}A_{11})+trace(A_{12}A_{12}^{*})\\ \end{aligned} \right. trace(A11A11)=trace(A11A11+A12A12)=trace(A11A11)+trace(A12A12)=trace(A11A11)+trace(A12A12) Finalli we get t r a c e ( A 12 A 12 ∗ ) = 0 trace(A_{12}A_{12}^{*})=0 trace(A12A12)=0. It means
that A 12 = 0 A_{12}=0 A12=0.

Lemma 2: An upper triangular matrix is normal if and only if it is
diagonal.

Using Lemma 1 recursively, we can easily find that Lemma 2 is true.

Theorem: Hermitian matrix is unitarily diagonalizable.

Schur triangularization tells us that Hermitian matrix A A A can be
unitarily transfomed into a upper triangular matrix with eigenvalues in
the diagonal. U ∗ A U = T U^{*}AU=T UAU=T Next, T T ∗ = U ∗ A U U ∗ A ∗ U = U ∗ A A ∗ U = U ∗ A ∗ A U = U ∗ A ∗ U U ∗ A U = T ∗ T \left. \begin{aligned} TT^{*}&=U^{*}AUU^{*}A^{*}U\\ &=U^{*}AA^{*}U\\ &=U^{*}A^{*}AU\\ &=U^{*}A^{*}UU^{*}AU\\ &=T^{*}T \end{aligned} \right. TT=UAUUAU=UAAU=UAAU=UAUUAU=TT yields that T T T is a normal matrix. From Lemma 2, it
implies that T T T is a diagonal matrix. Hence, hermitian matrix is
unitarily diagonalizable.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值