Simpson‘s rule Error analysis (辛普森积分方法的误差分析)

Introduction

Simpson’s rule is an integral approximate method. Instead of using the
original function f ( x ) f(x) f(x) to compute the integration, it uses a
polynomial function. If we have three points a , m , b a,m,b a,m,b and their values
f ( a ) , f ( m ) , f ( b ) f(a), f(m), f(b) f(a),f(m),f(b) where m = ( a + b ) / 2 m=(a+b)/2 m=(a+b)/2, then the approximation is

f ( x ) ≈ P ( x ) = f ( a ) ( x − m ) ( x − b ) ( a − m ) ( a − b ) + f ( m ) ( x − a ) ( x − b ) ( m − a ) ( m − b ) + f ( b ) ( x − a ) ( x − m ) ( b − a ) ( b − m ) f(x)\approx P(x)=f(a) \frac{(x-m)(x-b)}{(a-m)(a-b)}+f(m) \frac{(x-a)(x-b)}{(m-a)(m-b)}+f(b) \frac{(x-a)(x-m)}{(b-a)(b-m)} f(x)P(x)=f(a)(am)(ab)(xm)(xb)+f(m)(ma)(mb)(xa)(xb)+f(b)(ba)(bm)(xa)(xm)

and

∫ a b f ( x ) d x ≈ ∫ a b P ( x ) d x \int_a^bf(x)dx\approx \int_{a}^{b}{P(x)dx} abf(x)dxabP(x)dx

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KK6W0djP-1644459971010)(Simpsons.png)]{width=“0.4\linewidth”}

Next, we will analysis the error of this kind of simpson’s rule.

Error Analysis

E ( f ) = ∫ a b [ f ( x ) − P ( x ) ] d x E(f)=\int_{a}^{b}{[f(x)-P(x)]dx} E(f)=ab[f(x)P(x)]dx

Note that the residual of lagrange interpolation is

R ( x ) = f ( x ) − P ( x ) = f ( 3 ) ( ξ ( x ) ) 3 ! ( x − a ) ( x − m ) ( x − b ) . R(x)=f(x)-P(x)=\frac{f^{(3)}(\xi(x))}{3!}(x-a)(x-m)(x-b). R(x)=f(x)P(x)=3!f(3)(ξ(x))(xa)(xm)(xb).

Hence, we have

E ( f ) = ∫ a b ( x − a ) ( x − m ) ( x − b ) f ( 3 ) ( ξ ( x ) ) 3 ! d x E(f)=\int_{a}^{b}{(x-a)(x-m)(x-b) \frac{f^{(3)}(\xi(x))}{3!}dx} E(f)=ab(xa)(xm)(xb)3!f(3)(ξ(x))dx

Let w ( x ) w(x) w(x) be

w ( x ) = ∫ a x ( t − a ) ( t − m ) ( t − b ) d t . w(x)=\int_{a}^{x}{(t-a)(t-m)(t-b)dt}. w(x)=ax(ta)(tm)(tb)dt.

Then we have

  • w ( a ) = w ( b ) = 0 w(a)=w(b)=0 w(a)=w(b)=0.

  • w ( x ) > 0 w(x)>0 w(x)>0 for a < x < b a<x<b a<x<b.

Then we have

E ( f ) = ∫ a b w ′ ( x ) f ( 3 ) ( ξ ( x ) ) 3 ! d x = [ w ( x ) f ( 3 ) ( ξ ( x ) ) 3 ! ] x = a x = b − ∫ a b w ( x ) d d x f ( 3 ) ( ξ ( x ) ) 3 ! d x = − ∫ a b w ( x ) d d x f ( 3 ) ( ξ ( x ) ) 3 ! d x . \left. \begin{aligned} E(f)&= \int_{a}^{b}{w^{'}(x) \frac{f^{(3)}(\xi(x))}{3!}dx}\\ &= \left[ w(x) \frac{f^{(3)}(\xi(x))}{3!} \right]_{x=a}^{x=b}-\int_{a}^{b}{w(x)\frac{d}{dx}\frac{f^{(3)}(\xi(x))}{3!}dx}\\ &= -\int_{a}^{b}{w(x)\frac{d}{dx}\frac{f^{(3)}(\xi(x))}{3!}dx}. \end{aligned} \right. E(f)=abw(x)3!f(3)(ξ(x))dx=[w(x)3!f(3)(ξ(x))]x=ax=babw(x)dxd3!f(3)(ξ(x))dx=abw(x)dxd3!f(3)(ξ(x))dx.

Using the divided difference, we have

f [ a , m , b , x ] = f ( 3 ) ( ξ ( x ) ) 3 ! . f[a,m,b,x]= \frac{f^{(3)}(\xi(x))}{3!}. f[a,m,b,x]=3!f(3)(ξ(x)).

Hence,

d d x ( f ( x ) ( ξ ( x ) ) 3 ! ) = lim ⁡ h → 0 f [ a , m , b , x + h ] − f [ a , m , b , x ] h = lim ⁡ h → 0 f [ x , a , m , b , x + h ] = f [ x , a , m , b , x ] = f [ a , m , b , x , x ] = f ( 4 ) ( ξ ( x ) ) 4 ! \left. \begin{aligned} \frac{d}{dx} \left( \frac{f^{(x)}(\xi(x))}{3!} \right) &= \lim_{h\rightarrow 0} \frac{f[a,m,b,x+h]-f[a,m,b,x]}{h}\\ &=\lim_{h\rightarrow 0} f[x,a,m,b,x+h]\\ &=f[x,a,m,b,x]\\ &=f[a,m,b,x,x]\\ &=\frac{f^{(4)}(\xi(x))}{4!} \end{aligned} \right. dxd(3!f(x)(ξ(x)))=h0limhf[a,m,b,x+h]f[a,m,b,x]=h0limf[x,a,m,b,x+h]=f[x,a,m,b,x]=f[a,m,b,x,x]=4!f(4)(ξ(x))

Substituting the above formula into E ( f ) E(f) E(f), we have

E ( f ) = − ∫ a b f ( 4 ) ( ξ ( x ) ) 4 ! ∫ a x ( t − a ) ( t − m ) ( t − b ) d t d x \left. \begin{aligned} E(f) &= - \int_{a}^{b}{\frac{f^{(4)}(\xi(x))}{4!} \int_{a}^{x}{(t-a)(t-m)(t-b)dt} dx} \end{aligned} \right. E(f)=ab4!f(4)(ξ(x))ax(ta)(tm)(tb)dtdx

Applying the weighted mean value theorem, we have

E ( f ) = − f ( 4 ) ( η ) 4 ! ∫ a b ∫ a x ( t − a ) ( t − m ) ( t − b ) d t d x = − f ( 4 ) ( η ) 4 ! 1 120 ( b − a ) 5 = − f ( 4 ) ( η ) 24 [ 4 15 h 5 ] . h = b − a 2 \left. \begin{aligned} E(f) &= - \frac{f^{(4)}(\eta)}{4!} \int_{a}^{b}{\int_{a}^{x}{(t-a)(t-m)(t-b)dt}dx}\\ &=-\frac{f^{(4)}(\eta)}{4!} \frac{1}{120}(b-a)^5\\ &=-\frac{f^{(4)}(\eta)}{24}\left[\frac{4}{15} h^{5}\right] . \quad h=\frac{b-a}{2} \end{aligned} \right. E(f)=4!f(4)(η)abax(ta)(tm)(tb)dtdx=4!f(4)(η)1201(ba)5=24f(4)(η)[154h5].h=2ba

where η ∈ [ a , b ] \eta\in [a,b] η[a,b].

Thus, we have

E [ f ] = − h 5 90 f ( 4 ) ( η ) , η ∈ [ a , b ] . E[f]=-\frac{h^5}{90}f^{(4)}(\eta), \eta\in [a,b]. E[f]=90h5f(4)(η),η[a,b].

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值