UTF8gbsn
本文主要做一个简要的稀疏点云重建方法的梳理,
梳理的粒度比较大.略去了非常多的技术细节.
其实这项技术也叫做SFM(Structured From Motion).
特征
在3D重建中, 我们的输入是一系列的照片.
这些图片通常是围绕一个物体并拍摄的一系列照片.
实际上对于同一个物体所拍摄的照片中存在一些特征点. 这些特征点,
和拍摄角度位置无关. 我们可以通过算法去计算出这些特征点.
这个方法就是SIFT方法, 注意SIFT方法, 只是一个函数. 他的作用如下.
f e a t u r e s = S I F T ( i m a g e ) features=SIFT(image) features=SIFT(image)
它通过一个图像的输入,
计算出这个图像的不变形特征.这些特征是一个集合 f e a t u r e s = { f 1 , f 2 , ⋯ , f n } features = \{f_1,f_2,\cdots , f_n\} features={
f1,f2,⋯,fn}.
f i = { p o s i t i o n , s c a l e , d i r e c t i o n } f_i=\{position, scale, direction\} fi={
position,scale,direction}. 由此可见.
每一张图片都有一个这样的features向量. 在图像与图像之间.
这些特征实际上有一个对应关系.
但是我们通过 S I F T SIFT SIFT计算,并不知道这个对应关系.
我们只是朴素的提取每一张图片的不变性特征.
这些特征在不同图片之间怎么一一对应的, 我们目前不得而知.
特征匹配
特征比配的策略主要是比较SFIT特征.
这些特征靠计算欧拉距离和优化算法可以得到一个个一一对应的关系.形式化表示就可以.对于任意两张图片上的2D点 x i m g 1 , x i m g 2 \mathbf{x}^{img_1}, \mathbf{x}^{img_2} ximg1,ximg2.会有一个对应关系.
也就是说, 有一个这样的列表.
( x 1 i m g 1 x 1 i m g 2 x 2 i m g 1 x 2 i m g 2 ⋮ ⋮ x n i m g 1 x n i m g 2 ) \left( \begin{array}{cc} \mathbf{x}^{img_1}_1 & \mathbf{x}^{img_2}_1 \\ \mathbf{x}^{img_1}_2 & \mathbf{x}^{img_2}_2\\ \vdots & \vdots \\ \mathbf{x}^{img_1}_n & \mathbf{x}^{img_2}_n \end{array} \right) ⎝⎜⎜⎜⎛x1img1x2img1