统计量的方差为什么是除以m-1而不是m.

UTF8gbsn

本文就是一个简单的梳理方差的无偏估计.
首先,我们一般能直观的来定义一个方差的估计

σ ^ m 2 = 1 m ∑ i = 1 m ( x i − μ ^ m ) 2 \hat{\sigma}^2_m=\frac{1}{m}\sum_{i=1}^{m}(x_i-\hat{\mu}_m)^2 σ^m2=m1i=1m(xiμ^m)2

但是很遗憾这个估计并不是无偏估计,
因为 E ( σ ^ m 2 ) ≠ σ 2 E(\hat{\sigma}^2_m)\neq \sigma^2 E(σ^m2)=σ2. 证明如下.

E ( σ ^ m 2 ) = E ( 1 m ∑ i = 1 m ( x i − μ ^ m ) 2 ) = E ( 1 m ∑ i = 1 m ( x i − μ − μ ^ m + μ ) 2 ) = E ( 1 m ∑ i = 1 m ( ( x i − μ ) − ( μ ^ m − μ ) ) 2 ) = E ( 1 m ∑ i = 1 m ( ( x i − μ ) 2 + ( μ ^ m − μ ) 2 − 2 ( x i − μ ) ( μ ^ m − μ ) ) ) \left. \begin{aligned} E(\hat{\sigma}^2_m)&=E(\frac{1}{m}\sum_{i=1}^{m}(x_i-\hat{\mu}_m)^2)\\ &=E(\frac{1}{m}\sum_{i=1}^{m}(x_i-\mu-\hat{\mu}_m+\mu)^2)\\ &=E(\frac{1}{m}\sum_{i=1}^{m}((x_i-\mu)-(\hat{\mu}_m-\mu))^2)\\ &=E(\frac{1}{m}\sum_{i=1}^{m}((x_i-\mu)^2+(\hat{\mu}_m-\mu)^2-2(x_i-\mu)(\hat{\mu}_m-\mu))) \end{aligned} \right. E(σ^m2)=E(m1i=1m(xiμ^m)2)=E(m1i=1m(xiμμ^m+μ)2)=E(m1i=1m((xiμ)(μ^mμ))2)=E(m1i=1m((xiμ)2+(μ^mμ)22(xiμ)(μ^mμ)))

我们单独展开三项来看

E ( 1 m ∑ i = 1 m ( x i − μ ) 2 ) = σ 2 E ( 1 m ∑ i = 1 m ( μ ^ m − μ ) 2 ) = E ( ( μ ^ m − μ ) 2 ) E ( − ( μ ^ m − μ ) 2 m ∑ i = 1 m ( x i − μ ) ) = − 2 E ( ( μ ^ m − μ ) 2 ) \left. \begin{aligned} &E(\frac{1}{m}\sum_{i=1}^{m}(x_i-\mu)^2)=\sigma^2\\ &E(\frac{1}{m}\sum_{i=1}^{m}(\hat{\mu}_m-\mu)^2)=E((\hat{\mu}_m-\mu)^2)\\ &E(-(\hat{\mu}_m-\mu)\frac{2}{m}\sum_{i=1}^{m}(x_i-\mu))=-2E((\hat{\mu}_m-\mu)^2) \end{aligned} \right. E(m1i=1m(xiμ)2)=σ2E(m1i=1m(μ^mμ)2)=E((μ^mμ)2)E((μ^mμ)m2i=1m(xiμ))=2E((μ^mμ)2)

合并三项可得, E ( σ ^ m 2 ) = σ 2 − E ( ( μ ^ m − μ ) 2 ) E(\hat{\sigma}_m^2)=\sigma^2-E((\hat{\mu}_m-\mu)^2) E(σ^m2)=σ2E((μ^mμ)2),
又因为 μ ^ m = 1 m ∑ i = 1 m x i \hat{\mu}_m=\frac{1}{m}\sum_{i=1}^{m}x_i μ^m=m1i=1mxi带前式可得.

E [ ( μ ^ m − μ ) 2 ] = E [ ( 1 m ∑ i = 1 m x i − μ ) 2 ] = E [ ( 1 m ∑ i = 1 m x i − 1 m ∑ i = 1 m μ ) 2 ] = 1 m E [ 1 m ∑ i = 1 m ( x i − μ ) 2 ] = 1 m σ 2 \left. \begin{aligned} E[(\hat{\mu}_m-\mu)^2]&=E[(\frac{1}{m}\sum_{i=1}^{m}x_i-\mu)^2]\\ &=E[(\frac{1}{m}\sum_{i=1}^{m}x_i-\frac{1}{m}\sum_{i=1}^{m}\mu)^2]\\ &=\frac{1}{m}E[\frac{1}{m}\sum_{i=1}^{m}(x_i-\mu)^2]=\frac{1}{m}\sigma^2 \end{aligned} \right. E[(μ^mμ)2]=E[(m1i=1mxiμ)2]=E[(m1i=1mxim1i=1mμ)2]=m1E[m1i=1m(xiμ)2]=m1σ2

由此可见, E ( σ ^ m 2 ) = m − 1 m σ 2 ≠ σ 2 E(\hat{\sigma}_m^2)=\frac{m-1}{m}\sigma^2\ne \sigma^2 E(σ^m2)=mm1σ2=σ2.
而且我们可以马上得出只要加上一个修正因子.即可得到 σ 2 \sigma^2 σ2的无偏估计.也就是

σ ^ m 2 = 1 m − 1 ∑ i = 1 m ( x i − μ ^ m ) 2 \hat{\sigma}^2_m=\frac{1}{m-1}\sum_{i=1}^{m}(x_i-\hat{\mu}_m)^2 σ^m2=m11i=1m(xiμ^m)2

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值