自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 最大边界降维算法(large margin dimensionality reduction)

UTF8gbsn本文介绍一种非常简单的降维算法, 叫做最大边界降维算法.背景加入你有一个向量的集合S={v1,v2,⋯ ,vn}S=\{ \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \}S={v1​,v2​,⋯,vn​},其中xi\mathbf{x}_ixi​, 是一个n×1n\times 1n×1的向量.并且每一个向量xi\mathbf{x}_ixi​具有一个类别labelilabel_ilabeli​.那么如何来降维并使得不同的向量在计算

2020-05-27 10:15:19 420

原创 矩阵,向量的一阶函数求导

UTF8gbsn关于矩阵向量的导数在优化问题,还有机器学习领域比较常遇到.在这里我们进行一次梳理,不过本文只介绍一阶函数的导数.后面再逐渐写文来论证其他的导数.∂xTa∂x=∂aTx∂x=a\frac{\partial \mathbf{x}^T\mathbf{a}}{\partial \mathbf{x}}=\frac{\partial \mathbf{a}^T\mathbf{x}}{\partial \mathbf{x}}=\mathbf{a}∂x∂xTa​=∂x∂aTx​=a∂(a1x1+a

2020-05-26 22:22:58 2301

原创 bernoulli vs binominal vs multinoulli vs multinomial

UTF8gbsn本文主要介绍两个比较容易混淆的概念,在很多书里面和文献里面常常混淆这两个概念. 这两个概念就是 multinoullidistribution 和 multinomial distribution.但是我们首先要看什么是伯努利分布.bernoulli distributionP(x=1)=p,P(x=0)=1−p,\left. \begin{aligned} P(x=1)&=p,\\ P(x=0)&=1-p,

2020-05-15 11:07:48 413

原创 马氏距离(Mahalanois-distance)

UTF8gbsn本文主要介绍马氏距离(Mahalanois distance). 与欧拉距离不同,马氏距离主要用在判断一个样本是否属于某个分布.定义假设我们有一个采样数据x={x1,x2,⋯ ,xn}T\mathbf{x}=\{x_1,x_2, \cdots, x_n\}^Tx={x1​,x2​,⋯,xn​}T,而有一个已知的分布PPP,这个分布PPP的均值为μ=(μ1,μ2,⋯ ,μn)T\mathbf{\mu}= \left( \mu_1, \mu_2, \cdots, \mu_n \rig

2020-05-12 21:33:19 2372

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除