超前进位加法以及对应FPGA Carry Logic进位链的理解

1 加法器

1.1 半加器

两个二进制数,不考虑进位输入。

真值表:

ABOCO
0000
0110
1010
1101

{ O = A ‾ B + A B ‾ = A ⨁ B C O = A B \left\{ \begin{aligned} O &=& \overline{A}B+A\overline{B}&= A \bigoplus B \\ CO &=& AB & \end{aligned} \right. OCO==AB+ABAB=AB

在这里插入图片描述

1.2 全加器

考虑进位输入。

真值表:

CIABOCO
00000
00110
01010
01101
10010
10101
11001
11111

{ O = A ⨁ B ⨁ C I C O = A B + C I ( A ⨁ B ) \left\{ \begin{aligned} O & = A\bigoplus B \bigoplus CI \\ CO & = AB + CI(A\bigoplus B) \end{aligned} \right. OCO=ABCI=AB+CI(AB)

1 超前进位原理

为什么要超前进位?
进位信号逐级传递很耗时间,超前进位在相加运算之前就知道加法器的进位输入。

第i位的进位一定是两个加数中小于i的位数决定的。所以进位一定可以通过加数唯一确定。

由全加器进位 C O i = A i B i + C I i ( A i ⨁ B i ) CO_i = A_iB_i + CI_i(A_i \bigoplus B_i) COi=AiBi+CIi(AiBi) 知,两种情况产生进位:

  • A i B i A_iB_i AiBi=1
  • A i ⨁ B i A_i \bigoplus B_i AiBi=1 以及 CI_i=1

所以这里的+是逻辑

令:
{ 进 位 生 成 ( g e n e r a t e ) 函 数 D I i = A i B i 进 位 传 送 ( p r o p a g a t e ) 函 数 S i = A i ⨁ B i \left\{ \begin{aligned} 进位生成(generate)函数 DI_i &= A_iB_i \\ 进位传送(propagate)函数 S_i &= A_i \bigoplus B_i \end{aligned} \right. (generate)DIi(propagate)Si=AiBi=AiBi

即:

C O i = D I i + S i C I i CO_i = DI_i + S_i CI_i COi=DIi+SiCIi

将上式展开:

C O i = D I i + S i C I i = D I i + S i ( D I i − 1 + S i − 1 C I i − 1 ) = . . . = D I i + S i D I i − 1 + S i D I i − 1 D I i − 2 + . . . + S i S i − 1 . . . S 1 D I 0 + S i S i − 1 . . . S 0 C I 0 \begin{aligned} CO_i &= DI_i + S_i CI_i \\ &= DI_i + S_i(DI_{i-1} + S_{i-1} CI_{i-1}) \\ &= ...\\ &= DI_i + S_iDI_{i-1} + S_iDI_{i-1}DI_{i-2} + ... +S_iS_{i-1}...S_1DI0 + S_iS_{i-1}...S_0CI_0 \\ \end{aligned} COi=DIi+SiCIi=DIi+Si(DIi1+Si1CIi1)=...=DIi+SiDIi1+SiDIi1DIi2+...+SiSi1...S1DI0+SiSi1...S0CI0

2 Xilinx fpga的超前进位逻辑

7系列FPGA的CLB有两个分离的进位链(每个slice各一个),进位链可级联形成更宽的加减逻辑。

进位链向上运行,每各slice高度为4位。对于每一位,都有一个进位数据选择器(MUXCY)和一个专用的异或门,用于用选定的进位位加/减操作数。专用进位路径和进位数据选择器(MUXCY)也可用于级联函数生成器,以实现更广泛的逻辑函数。

Device视图的SLICEL:
在这里插入图片描述

SLICEL示意图:

在这里插入图片描述

Carry Logic示意图:
在这里插入图片描述

输入:

  • 进位链的DI0-DI3输入对应进位生成函数 D I i DI_i DIi

    • 来源于LUT6的O6输出
  • S0-S4输入对应进位传送函数 S i S_i Si

    • 来源于LUT6的O5输出
    • 或来源于DILICE的BYSADI输入
  • CYINIT

    • 进位链的第一位输入
      • 0 :代表加
      • 1 :代表减
      • AX:动态控制
  • CIN:

    • 级联中的上一级输入

输出:

  • O0-O3:
    • 运算结果
  • CO0-CO3:
    • 每位的进位输出
    • 级联中本级的输出

1 加

假设这是第一级,则进位链的第一位由CYINIT输入,当实现加法时,CYINIT = 0。

FSDIA实现超前进位的时候:使用前级的LUT6实现进位生成函数进位传送函数

结果输出:
{ O i = S i ⨁ C O i − 1 = ( A i ⨁ B i ) ⨁ C O i − 1 i = 1 , 2 , 3 O 0 = S 0 ⨁ 0 = A 0 ⨁ B 0 \left\{ \begin{aligned} O_i &= S_i \bigoplus CO_{i-1} &= &(A_i \bigoplus B_i)\bigoplus CO_{i-1}\quad i=1,2,3 \\ O_0 &= S_0 \bigoplus 0 &= &A_0 \bigoplus B_0 \\ \end{aligned} \right. OiO0=SiCOi1=S00==(AiBi)COi1i=1,2,3A0B0

进位输出:

首先,看看DI和S所有的情况:

AB-DI=ABS=A+B
00-00
01-01
10-01
11-10

可以看到,只有三种取值,且DI与S不会同时取1。

所以,根据公式 C O = D I + S C I CO=DI+S CI CO=DI+SCI。可将S作为选择信号:
{ C O = D I , S = 0 C O = C I , S = 1 D I 与 C I 不 同 时 取 1 \left\{ \begin{aligned} CO = DI \quad,S=0 \\ CO = CI \quad,S=1 \\ DI与CI不同时取1 \end{aligned} \right. CO=DI,S=0CO=CI,S=1DICI1
当S=0,选择DI输出,当S=1,选择CI输出。因为DI与S不会同时取1,是可以实现表达式的。

真值表:

CIDISCO=DI+S CI
00 00
00 10
01 01
10 00
10 11
11 01

2 减

当实现减法时,运算为补码加。

CYINIT = 1,运算前逻辑取反之后加一,即取补码。

修改记录

20220322修订,更改了 + 映射成 | 或者 ⨁ \bigoplus 模糊的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lu-ming.xyz

觉得有用的话点个赞吧 :)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值