采样后,计算机得到的是离散的点,用这些离散的点来代替连续的线就势必会产生误差,那么这个误差是不是在容许的范围内,根据采样得到离散的点能不能还原出连续的信号?——
奈奎斯特采样定理
奈奎斯特采样定理解释了采样率和所测信号频率之间的关系。 阐述了采样率fs必须大于被测信号感兴趣最高频率分量的两倍。 该频率通常被称为奈奎斯特频率fN。 通常希望采样率大于信号频率约五倍。
为更好理解其原因,让我们来看看不同速率测量的正弦波。 情况A,频率f的正弦波以同一频率采样。 这些采样标记在原始信号的左侧,在右侧构建时,信号错误地显示为恒定直流电压。 情况B,采样率是信号频率的两倍。 现在信号显示为三角波。 这种情况下,f等于奈奎斯特频率,这也是特定采样频率下为了避免混叠而允许的最高频率分量。 情况C,采样率是4f/3。
混叠
如需按一定速率采样以避免混叠,那么混叠到底是什么? 如果信号的采样率低于两倍奈奎斯特频率,采样数据中就会出现虚假的低频成分。 这种现象便称为混叠。
混叠发生在采样率过低的时候,产生不精确的波形显示。
PPM信号的采样速率
项目中用到PPM信号,800MHz,即时隙宽度是1/800M秒,要求4倍采样,即要求ADC采样速率3.2GS/s。
刚开始没理解,奈奎斯特采样定理研究的是信号经傅里叶变换后的频谱,不能直接把方波信号的频率直接当作它频谱的频率吧。
实际上,方波信号的频谱类似这样:
是无限延伸下去的,理论上找不到“最高频率”。然而工程里关注它的主要成分就够了,即“主瓣”。这个主瓣频谱中的f和方波周期性变化的f恰好一致。
至此,就理解了ADC采样频率到底是怎么要求的。通信里用的都是类似的方波,以后都同理。
进一步发问,对于其他种类的信号,类似的结论还成立么?暂时用不到,搁置讨论。