随着人工智能技术的飞速发展,大模型技术已经成为AI领域的重要分支。
本文将深入探讨四种关键的大模型技术架构:纯粹Prompt提示词法、Agent + Function Calling机制、RAG(检索增强生成)以及Fine-tuning微调技术,揭示它们的特性和应用场景。
一、纯粹Prompt提示词法:构建直观交互模式
纯粹Prompt提示词法是AI大模型交互的直接形式,它通过模拟自然对话,实现用户与AI的即时互动。
核心特性:
-
即时性:AI模型能够迅速响应用户输入,提供即时反馈。
-
简洁性:无需复杂的配置,简化了人机交互过程。
-
场景简易查询:适用于用户进行简单查询,如节日旅游建议等。
-
技术路由转发模块:负责对用户输入的Prompt进行分类和分发。
二、Agent + Function Calling:主动提问与函数调用
Agent + Function Calling架构赋予AI模型主动提问和调用函数的能力,以获取更多信息并执行特定任务。
核心特性:
-
多轮交互:AI模型通过多轮对话理解用户需求,提供精准反馈。
-
功能执行:通过函数调用执行特定功能,如查询、预订等。
-
场景智能家居控制:AI模型主动获取环境信息,控制家居设备。
-
技术主动提问:AI模型根据对话上下文,主动提出问题以获取更多信息。
三、RAG(检索增强生成):结合向量数据库进行检索
RAG(Retrieval-Augmented Generation)架构通过结合Embeddings技术和向量数据库匹配最相近的向量,优化了信息检索过程,提高了检索速度和准确性。
Embeddings 过程把文本转化成高维空间中的向量形式,优化了相似性比较,而这些精炼的向量则储存在高效的向量数据库中,旨在实现高效的检索。
核心特性:
-
向量检索:利用向量数据库进行高效的相似性比较和数据检索。
-
生成优化:结合检索结果,生成更准确和相关的回答。
-
场景学习辅导:在学生遇到难题时,快速提供学习资源和解答。
-
技术Embeddings技术:将文本转化为高维向量,优化相似性比较。
四、Fine-Tuning:深度学习与长期记忆
Fine-Tuning技术通过对预训练模型进行额外训练,使其能够深入学习特定领域的知识,提升专业性和准确性。
核心特性:
-
领域专业化:使AI模型在特定领域展现出更高的专业性。
-
长期记忆:通过微调,模型能够记住并运用长期知识。
-
场景医疗诊断领域:提供精确的医疗诊断建议。
-
技术预训练与微调:结合预训练模型和领域特定数据进行微调。
五、技术路线选择
这个流程图指导了,根据业务需求和场景特点,选择最合适的技术架构。
总结:
大模型技术的不断进步为AI领域带来了新的可能性。通过深入理解不同技术架构的特性和应用场景,我们可以更好地利用这些技术,推动AI技术的发展和应用。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓