AI大模型赋能医药零售应用场景全解析

随着集采、DRG/DIP、医药反腐等一系列政策的落实及行动的推进,逐步挤压水分、促进药价合理回归,各大药械企业将目光从医院渠道转向以医药零售为代表的全渠道院外市场。医药零售渠道在迎来机遇的同时,也面临新政策的影响、患者流量的路径变化、合规(飞检)要求升级,以及降本增效等多种挑战,药企想要构筑差异化竞争优势,必须把握住医药零售行业的转型趋势。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

在这样的背景下,生成式人工智能(AIGC)为医药零售行业带来了更多可能性。近日,安永发布了《智启新质生产力之二——生成式人工智能(AIGC)在医药零售的潜在应用》主题白皮书,深入剖析了中国零售药店市场发展趋势,并全面分析AIGC在这一领域的多重应用场景,揭示了AIGC如何为药企在零售药店渠道赋能。

五大转型方向,引领医药零售行业变革

白皮书指出,近年来,医药零售行业正在发生的深刻变化。政策环境方面,处方外流政策、医保"双通道"、医保个账改革等政策正在重塑行业格局。从消费需求来看,消费者健康意识提升,需求日益多样化和个性化。且疫情后线上购药需求增加,价格敏感度上升。竞争加剧也是一大重要趋势,连锁药店快速扩张,互联网医院和医药电商等渠道的崛起增加了竞争压力。最后,科技驱动创新是一个尤为重要的趋势,一方面智能健康产品品创新商品正吸引越来越多的消费者,同时,药店的运营模式也在不断创新,如通过与社区合作设立社区药店、应用智能药柜、实现多元化经营等,甚至与美容、健身等领域跨界合作,进一步拓展了药店的业务边界。

面对这些变化,医药零售企业正在探索以下转型方向:一是更加重视线上线下融合,提升全渠道消费者体验。二是销售品类多样化,从传统的处方药和OTC向营养保健品、医美产品及健康管理服务拓展。三是由于集采、“三同”“四同”价格治理等因素的影响,导致零售渠道药品等商品的综合价格和毛利下降,药企和连锁药店将更加注重在医药零售渠道的运营,降本增效。四是消费者对药品种类多样、专业指导、健康管理要求在提高,对价格敏感度也在增加,药店需要更加重视购物体验,提供健康管理等增值性服务。五是面对飞检等监管趋严的状况,药店还需更加注重合规经营。

AIGC赋能多样化应用场景

过去十年,数字化不断成为医药零售行业推动业务增长和提高运营效率的核心力量。未来,AIGC的将为医药零售行业带来更多的助力和想象空间。白皮书认为,AIGC将有机会从两个维度为医药零售行业提供助力——赋能消费者/患者在药店门店内体验、赋能连锁药店从总部到门店各部门运营。

在赋能消费者的药店门店内体验方面,AIGC有助于优化消费者体验(如健康管理、店内导购、物流配送)、提升门店运营效率(如库存管理、销售分析、员工培训)、推动市场营销与消费者互动(如精准营销、自动化内容生成)等,如下图:

资料来源:安永内部分析

在赋能连锁药店各个部门运营场景方面,AIGC的应用可以覆盖多个业务场景,包括药品采购与验收、商品管理与库存优化、销售结算与财务管理、会员管理与消费者体验等,如下图:

资料来源:安永内部分析

此外,在风控合规方面,AIGC还有望帮助连锁药店更好地做好合规管控,实现规范化运营。具体场景如下图:

资料来源:安永内部分析

推进AIGC释放潜力,需牢牢把握实践路径

关于如何落地实施AIGC,白皮书指出,医药零售企业需要遵循以下步骤:

  • 1、需求分析与策略制定:深入分析业务需求,明确AIGC应用目标和预期效果。

  • 2、技术评估与选择:综合考虑性能、成本、安全性等因素,选择合适的AIGC模型。

  • 3、数据准备与处理:收集、清洗、标注适合模型训练的数据,确保数据质量和合规性。

  • 4、应用开发与测试:开发具体应用(如聊天机器人、智能助手等),持续测试优化。

  • 5、用户培训与变革管理:对员工进行AIGC工具使用培训,建立案例资源库。

  • 6、安全性与合规性维护:关注数据安全和隐私保护,确保操作合规。

资料来源:安永内部分析

关注风险,及早布局应对策略

尽管AIGC为医药零售行业带来了前所未有的机遇,其使用也伴随着数据安全、算法偏差、以及合法合规等潜在风险。白皮书建议,药企和连锁药店需要制定全面、细致的应对策略,使AIGC技术的安全合规应用。包括建立全面的数据治理体系,确保数据隐私与合规;强化模型透明性和责任追踪,避免因决策不明确带来的法律风险;持续优化算法和加强内部员工培训,推动AIGC的规范化应用等,从而实现数字化转型过程中的稳步前进。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值