2.成本聚合阶段的识别
尽管一些包含可变支撑的方法限制了成本聚合步骤,只以固定的权重在固定的正方形窗口上。此外,这个基本方法旨在提升准确性同时主要基于提出的一个或两个不同的方法。前者概括说来就是任意形状的可变区域代替了正方形窗口。后者参数是自适应的而不是固定的。这些方法旨在提升算法的准确率,另一方面,这些支撑平面的不规则增加了计算复杂度,提高了运算成本。大多数成本聚合策略是根据两张图的对称策略来决定自身的支撑平面分布。
成本函数主要分为绝对差总和(SAD),方差总和(SSD)还有阈截断和(truncateSAD)
IrIt分别是参考图和目标图。pq分别是它们中的点,w是它们中的窗口。
可变支撑面方法基于固定的窗口对,S定义于两个图片。当评估pq二者关系时,Sv(P,Q)每个对应都不相同,将自身适应于pq的位置特征信息,因此相比于固定静态支撑面,这种根据图像质量而变化的支撑面对于深边缘还有低纹理区域的效果是非常好的。局部匹配成本由计算Sv(p,q)的错误成本得到。
值得注意的是,每个对应内的支撑面取决于图像,而绝对理论上说是决定于自身的错误函数的。更进一步说,变化窗口中的点权数是固定的而不根据图像改变而改变。最后,这个方法最大的优势就是计算效率高。
2.1.1 尺寸或者偏移可变窗口
第一个算法所说的有个观点就是使用一系列的窗口来提高匹配对应算法的有效性的方法就是可变窗口。窗口定义如下,n是算法参数代表着窗口大小。每个对应点的支撑面,定义于S的损失函数的窗口最小化。该方法对于深边缘非常有效,因为它旨在确定p最合适的位移,其中p是窗口的中心,这样做的目的就是聚合跟p有着一样深度平面的点。这个基本法的变化只根据中心点改变位置,不改变大小,大小为9。
另外一种可变的方法就可以改变大小,但是会控制大小变化范围。因此对于低纹理区域,窗口的大小就会更大。
这些策略能够根据一系列不同大小不同位移的窗口选择出最佳的支撑面,最佳的位移是根据可变窗口法创造的,先由最小尺寸的窗口来,然后慢慢变大直到损失函数给定的最小变量值达到为止。
一个轻微的更加通用的方法是选择匹配成本最小的窗口作为支撑窗口。匹配成本的三元素是基于损失函数的最小值还有它的变化,加上偏移权重的使用,更偏爱低纹理区域的大窗口。损失函数和它的变量可能并没有根据估计的窗口大小而变化。此外,这个方法提出了增加策略旨在每个新位置的计算有效性。
一个类似的策略,最好的偏移是使用可变窗策略。接着,窗口大小逐渐变小直到损失函数性能变坏。
每个对应的位移认为大小为4。即窗口的四个边角。对于窗口的大小,一开始有个初始值,窗口在水平和垂直位置上开始逐渐扩大直到一个方向上的损失变量超过确定的阈值,损失函数变得糟糕。与以往的方法不同,这将得到矩形支撑面。
尽管一些包含可变支撑的方法限制了成本聚合步骤,只以固定的权重在固定的正方形窗口上。此外,这个基本方法旨在提升准确性同时主要基于提出的一个或两个不同的方法。前者概括说来就是任意形状的可变区域代替了正方形窗口。后者参数是自适应的而不是固定的。这些方法旨在提升算法的准确率,另一方面,这些支撑平面的不规则增加了计算复杂度,提高了运算成本。大多数成本聚合策略是根据两张图的对称策略来决定自身的支撑平面分布。
成本函数主要分为绝对差总和(SAD),方差总和(SSD)还有阈截断和(truncateSAD)
IrIt分别是参考图和目标图。pq分别是它们中的点,w是它们中的窗口。
可变支撑面方法基于固定的窗口对,S定义于两个图片。当评估pq二者关系时,Sv(P,Q)每个对应都不相同,将自身适应于pq的位置特征信息,因此相比于固定静态支撑面,这种根据图像质量而变化的支撑面对于深边缘还有低纹理区域的效果是非常好的。局部匹配成本由计算Sv(p,q)的错误成本得到。
值得注意的是,每个对应内的支撑面取决于图像,而绝对理论上说是决定于自身的错误函数的。更进一步说,变化窗口中的点权数是固定的而不根据图像改变而改变。最后,这个方法最大的优势就是计算效率高。
2.1.1 尺寸或者偏移可变窗口
第一个算法所说的有个观点就是使用一系列的窗口来提高匹配对应算法的有效性的方法就是可变窗口。窗口定义如下,n是算法参数代表着窗口大小。每个对应点的支撑面,定义于S的损失函数的窗口最小化。该方法对于深边缘非常有效,因为它旨在确定p最合适的位移,其中p是窗口的中心,这样做的目的就是聚合跟p有着一样深度平面的点。这个基本法的变化只根据中心点改变位置,不改变大小,大小为9。
另外一种可变的方法就可以改变大小,但是会控制大小变化范围。因此对于低纹理区域,窗口的大小就会更大。
这些策略能够根据一系列不同大小不同位移的窗口选择出最佳的支撑面,最佳的位移是根据可变窗口法创造的,先由最小尺寸的窗口来,然后慢慢变大直到损失函数给定的最小变量值达到为止。
一个轻微的更加通用的方法是选择匹配成本最小的窗口作为支撑窗口。匹配成本的三元素是基于损失函数的最小值还有它的变化,加上偏移权重的使用,更偏爱低纹理区域的大窗口。损失函数和它的变量可能并没有根据估计的窗口大小而变化。此外,这个方法提出了增加策略旨在每个新位置的计算有效性。
一个类似的策略,最好的偏移是使用可变窗策略。接着,窗口大小逐渐变小直到损失函数性能变坏。
每个对应的位移认为大小为4。即窗口的四个边角。对于窗口的大小,一开始有个初始值,窗口在水平和垂直位置上开始逐渐扩大直到一个方向上的损失变量超过确定的阈值,损失函数变得糟糕。与以往的方法不同,这将得到矩形支撑面。
2.1.2 选择不止一个的窗口
所有之前的方法都是对每个对应选择一个最好的支撑窗口。这里窗口数量可以不为1.而是有很多窗口。S与1中的一样,损失的输出可以用来评价是否这个点接近于深度边缘。基于此,可变支撑策略可用在全部的点上用来检测是否接近于深度边缘。最终的匹配成本由每个对应点所指定,通过平均损失函数,定义如下
可变平面中每个对应点由3个最好的支撑窗口的联合所得到。这个策略的变量的窗口大小最好是5或者13,比9和25要好。
2.1.3
论文08年,年代久远,停止阅读