训练FastestDet(Anchor-Free、参数量仅0.24M、计算量0.9GFLOPs),稍改代码使得符合YOLO数据集排布

本文介绍了如何使用FastestDet框架对YOLO数据集进行准备,包括生成绝对路径的txt文件、配置训练参数、调整数据集结构以便训练,以及使用eval.py进行验证和获取模型参数量与计算量的方法。
摘要由CSDN通过智能技术生成

0 参考链接

1 准备数据

我已有的数据集排布:(符合YOLO排布)

dataset:.
├─images
│  ├─test
│  │  ├─xxx.jpg
│  │  ├─xxx.jpg
│  ├─train
│  └─val
├─labels
│  ├─test
│  │  ├─xxx.txt
│  │  ├─xxx.txt
│  ├─train
│  └─val

1.1 使用以下代码生成绝对路径的txt文件

  • root_dir:数据集根目录
  • save_dir:存储目录
  • 结果:生成3个txt文件abspath_xxx.txt
import os

if __name__ == '__main__':
    root_dir = r'F:/A_Publicdatasets/RDD2020-1202/train_valid/RDD2020_together/images'
    save_dir = 'F:/A_Publicdatasets/RDD2020-1202/train_valid/RDD2020_together/'

    for s in ['train', 'val', 'test']:
        save_path = f'{save_dir}/abspath_{s}.txt'
        with open(save_path, 'w') as f:
            for file in os.listdir(os.path.join(root_dir, s)):
                f.write(f'{root_dir}/{s}/{file}\n')

1.2 在config文件夹下新建一个xxx.names文件

例如,我新建了一个RDD2020.names

在这里插入图片描述

2 配置训练参数

拷贝configs/coco.yaml 文件并重取名,例如我重命名为RDD2020.yaml,然后进行以下改动:

在这里插入图片描述

3 稍改代码使得符合YOLO数据集排布

在这里插入图片描述
utils/datasets.py中定位到def __getitem__(self, index)然后做如下改动:

在这里插入图片描述

label_path = img_path.replace('images', 'labels').replace('jpg', 'txt')

4 开始训练

我是直接在train.py里面设置了yaml位置,就可以直接运行train.py

也可以不设置,然后调用如下参数在终端训练:

python train.py --yaml configs/coco.yaml

在这里插入图片描述
还可以进行以下改动,指明权重存放位置:

在这里插入图片描述


                save_dir = 'runs/'  # 存放训练文件的根目录
                save_name = 'FastestDet'    # 本次训练存放的文件名
                torch.save(self.model.state_dict(), f"{save_dir}/{save_name}/weight_AP05:%f_%d-epoch.pth" % (mAP05, epoch))
                # torch.save(self.model.state_dict(), f"checkpoint/weight_AP05:%f_%d-epoch.pth"%(mAP05, epoch))

5 使用eval.py进行验证

  • 因为是进行验证,所以batchsize应该设置为1,则在configs/RDD2020.yaml中将BATCH_SIZE设置为1
  • 如果想要用test来进行验证的话,就将configs/RDD2020.yaml中的VAL改为baspath_test.txt的路径

在这里插入图片描述

我喜欢直接在eval.py修改好了参数然后运行:

在这里插入图片描述

然后在终端输入python eval.py即可

在这里插入图片描述
如果想要下面打印的值的位数更多的话,可以:

  1. eval.py中的最下面进行如下修改

在这里插入图片描述

    stats = evaluation.compute_map(val_dataloader, model)
    for element in stats:
        print(element)
  1. utils/evaluation.py里面定位到coco_eval.summarize()然后进行如下修改:

在这里插入图片描述

        return coco_eval.stats

最终打印的结果就会多出最后面的那些值:

在这里插入图片描述

6 得到参数量、计算量的方法

TMD,终于试出来怎么打印计算量了!TNND!MLGBZ!

方式:

在这里插入图片描述

if __name__ == "__main__":
    model = FastestDet()
    # model.train() # 要打印下面参数量计算量的时候注释掉


    # -------------------打印参数量|计算量---------------- #
    model = model.model

    from thop import profile
    img = torch.rand(1, 3, 640, 640).to(device)
    flops, params = profile(model, (img,))
    print(f'params: {params} M, GFLOPs: {2 * flops} M')   # 注意这里的flops要×2,才跟yolo打印出来的值对应得上
    print('params: %.2f M, GFLOPs: %.1f M' % (params / 1e6, 2 * flops / 1e9))   # 注意这里的flops要×2,才跟yolo打印出来的值对应得上
    # -------------------打印参数量|计算量---------------- #

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟孟单单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值