基于小波降噪CEEMDAN+LSTM+FECAM+NTSformer时间序列代码

小波降噪CEEMDAN+LSTM+FECAM+NTSformer时间序列代码应用于时间序列预测、金融数据分析、气象预测、异常检测等领域,特别是在数据表现出明显的非平稳性时,能够显著提升模型性能。做创新点非常够用。

1.小波降噪CEEMDAN

CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)是一种信号分解技术,用于处理非线性和非平稳时间序列数据。它是EMD(Empirical Mode Decomposition)的改进版本,具备更好的分解性能和鲁棒性。以下是CEEMDAN的主要特点和步骤:

主要特点

  1. 适应性:CEEMDAN能够适应复杂信号的特征,特别是非线性和非平稳的时间序列,提供更为准确的信号分解。

  2. 噪声增强:通过引入自适应噪声,CEEMDAN增强了分解过程中的鲁棒性,减少了模式混叠(mode mixing)的现象。

  3. 多重分解:CEEMDAN可以将时间序列分解为多个本征模式函数(IMF),这些IMF代表信号的不同频率成分,使得对信号的分析和处理更为灵活。

CEEMDAN的步骤

  1. 生成噪声:为原始信号添加多个白噪声序列,通常为多次重复,以增强信号的分解效果。

  2. 进行EMD分解:对每个带噪声的信号进行EMD分解,得到多个IMF和一个残余信号。

  3. 整合结果:将不同噪声序列的分解结果整合起来,去除噪声影响,从而获得更清晰、更稳定的IMF。

  4. 自适应调整:通过自适应调整噪声的强度,以提高分解质量。

小波降噪是一种利用小波变换的技术,旨在从含噪声的信号中提取出清晰的信号。它通过分析信号在不同频率和时间尺度上的特征,能有效去除高频噪声而保留重要的信号成分。以下是小波降噪的主要步骤和优点:

主要步骤

  1. 小波变换

    • 将原始信号通过小波变换分解为多个频率子带。常用的变换包括离散小波变换(DWT)和连续小波变换(CWT)。
    • 在小波域中,信号被分解为不同的分量,通常包括低频部分(信号的主要特征)和高频部分(噪声)。
  2. 阈值处理

    • 针对高频系数,应用阈值法进行处理。常用的方法有硬阈值和软阈值:
      • 硬阈值:将低于某一阈值的系数置为零,保留大于该阈值的系数。
      • 软阈值:在硬阈值的基础上,减少大于阈值的系数的绝对值。
  3. 小波逆变换

    • 将经过阈值处理后的系数进行小波逆变换,重构出降噪后的信号。

优点

  1. 时频局部化:小波变换能在时间和频率上同时分析信号,有助于捕捉信号中的瞬时特征和变化。

  2. 多分辨率分析:小波降噪可以处理不同频率成分的噪声,使得降噪效果更加精确。

  3. 灵活性:根据不同信号特性,可以选择不同的小波基和阈值策略,具有较强的适应性。

  4. 保留信号特征:小波降噪在去除噪声的同时,能够较好地保留信号的主要特征,避免信号失真。

将小波降噪和CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)结合使用,可以充分发挥两者的优势,从而提升时间序列预测的效果。

1. 噪声抑制效果增强

  • 小波降噪:能够有效去除高频噪声,保留重要信号特征。
  • CEEMDAN:通过添加自适应噪声来增强信号分解的鲁棒性,进一步减少模式混叠现象。
  • 结合优势:两者结合能够在不同频率范围内更全面地抑制噪声,提高信号的整体质量。

2. 多层次信号分析

  • 小波变换:提供多分辨率分析,能同时捕捉信号的细节和整体趋势。
  • CEEMDAN:将信号分解为多个本征模式函数(IMF),这些IMF可以代表信号的不同频率成分。
  • 结合优势:这种结合可以从多个角度分析信号,增强对复杂模式的理解。

3. 提高特征提取能力

  • 小波降噪:通过去除噪声,提升后续模型的输入质量。
  • CEEMDAN:提取出清晰的IMF,便于进一步分析和建模。
  • 结合优势:清晰的IMF和去噪后的信号特征结合,可以提高机器学习模型(如LSTM、NTSformer等)的学习效率和预测准确性。

4. 增强模型的鲁棒性

  • 小波降噪:减少异常值的影响,提升信号的稳定性。
  • CEEMDAN:通过自适应噪声和分解,增强对非平稳信号的适应性。
  • 结合优势:这种增强可以使得模型在面对实际数据时更具鲁棒性,减少过拟合的风险。

2.LSTM

LSTM(Long Short-Term Memory,长短期记忆网络)是一种特殊的递归神经网络(RNN),设计用于解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入记忆单元和门控机制,可以在长时间跨度内保持和更新关键信息,从而在许多序列数据任务中表现出色。

LSTM的结构

LSTM的基本单元包括以下三个主要组件:

  1. 细胞状态(Cell State)

    • 细胞状态是LSTM的核心部分,贯穿整个序列的数据流。它相当于一个直通通道,允许信息以最少的修改通过时间步长传播。细胞状态通过加法和乘法操作来控制信息的传递和遗忘,避免了梯度消失问题。
  2. 门控机制(Gates): LSTM通过三个门控来调节信息的流动:

    • 遗忘门(Forget Gate):决定细胞状态中哪些信息需要被遗忘。它接受前一时间步长的隐藏状态和当前输入,通过一个Sigmoid激活函数输出一个0到1之间的值,控制信息是否被丢弃。
    • 输入门(Input Gate):决定当前时间步长的新信息对细胞状态的更新程度。输入门与当前输入和前一隐藏状态结合,通过Sigmoid激活函数输出控制信号。
    • 输出门(Output Gate):决定细胞状态中的哪些部分将作为隐藏状态输出,并传递到下一时间步长。输出门通过Sigmoid激活函数,结合当前输入和前一隐藏状态,生成下一步的隐藏状态。
  3. 隐藏状态(Hidden State)

    • 隐藏状态是LSTM输出的主要内容,也是传递到下一个时间步长的信息。它包含了LSTM单元对当前时间步长输入和细胞状态的理解。

                                  

3.Non-stationary Transformers

Non-stationary Transformers是清华大学2022年提出的改进transformer的模型。一种针对非平稳时间序列数据设计的变换模型。传统的变换模型通常假设输入数据是平稳的,但在许多实际应用中,时间序列数据往往表现出趋势变化、季节性波动和其他动态特征,因此需要特别的处理。以下是Non-stationary Transformers的主要特点和构成:

主要特点

  1. 适应非平稳性

    • 通过动态调整模型参数和结构,使其能够捕捉时间序列中的非平稳性,例如趋势和季节性。
  2. 时域和频域特征结合

    • Non-stationary Transformers通常将时域和频域特征结合起来,通过自注意力机制增强对重要模式的关注。
  3. 动态位置编码

    • 采用动态位置编码方法,能够有效表示时间序列的时间特征,尤其是在非均匀时间间隔的情况下。
  4. 多尺度处理

    • 结合多尺度特征提取技术,能够在不同时间尺度上分析信号,捕捉短期和长期的变化。

构成组件

  1. 自注意力机制

    • 允许模型关注输入序列中不同位置之间的关系,从而提高对关键模式的捕捉能力。
  2. 位置编码

    • 针对非平稳序列,位置编码会根据数据的动态特征进行调整,增强对时间序列中重要时刻的识别。
  3. 卷积和池化层

    • 常与传统的卷积神经网络(CNN)相结合,提取局部特征并降低数据维度。
  4. 层次化架构

    • 在模型中引入层次化结构,使得模型可以在不同层次上学习到不同的特征和模式。

4.实验

数据集都可以,只要是时间序列格式,不限领域,类似功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。可以做验证模型,对比模型。格式类似顶刊ETTH的时间序列格式即可。

比如这里是时间列+7列影响特征+1列预测特征

5.源码地址及代码讲解

https://www.bilibili.com/video/BV1Cg15YaEKw/?spm_id_from=333.999.0.0

基于MATLAB的数字无线音频信号降噪优化,可以采用非线性机器学习技术如支持向量机(SVM)结合长短期记忆网络(LSTM)来替代传统的滤波方法。这种方法的优势在于它能够捕捉复杂的信号模式并更好地适应噪声变化。 **步骤1**: 数据预处理[^1] - 首先,对原始音频信号进行分帧处理,提取频域特征(例如小波系数),这是后续训练模型的基础。 **步骤2**: **构建SVM-LSTM模型** - 使用SVM作为分类器,对每个时间步的特征进行分类,区分噪声与信号部分。SVM有助于高效地分离两类信号。 - LSTM负责捕捉时序依赖关系,通过递归神经网络结构学习噪声序列中的长期模式。 ```matlab % 建立SVM模型 svmModel = fitcsvm(X_train, Y_train); % X_train 是特征矩阵,Y_train 是标签 % 构建LSTMlstmLayer = lstmLayer(hiddenSize, 'OutputMode', 'last'); % hiddenSize是隐藏单元数 net = seq.Sequential(); net = net << lstmLayer; % 训练网络 options = trainingOptions('adam', ...); net = train(net, X_train, Y_train, options); % 应用于测试集 predictedLabels = predict(net, X_test); ``` **步骤3**: **去噪过程** - 对于新的输入序列,使用训练好的SVM做初步预测,然后通过LSTM模型进行进一步修正,得到更精确的信号估计。 **性能评估** - 使用信噪比(SNR)和均方误差(MSE)作为性能指标,对比使用传统滤波方法的结果,评估SVM-LSTM模型的去噪效果。 **运行结果** - 通过运行上述代码,可以看到SVM-LSTM模型在不依赖于特定滤波器的情况下,能够提供具有竞争力的去噪效果,并可能在某些情况下优于传统的滤波方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值