深度学习基础(二):神经网络参数初始化、Batch size和Optimization

本文探讨了深度学习中神经网络权重的初始化,包括固定方差的高斯分布和均匀分布,以及基于方差缩放的Xavier和He初始化。接着讨论了Batch size对模型训练的影响,如收敛速度和泛化能力。最后,介绍了常见的优化器,如SGD、Momentum、RMSprop和Adam。理解这些概念有助于优化模型的训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.神经网络初始化

初识化神经网络权重 w w w

1.1固定方差

1)高斯分布

E = 0 E=0 E

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值