路径规划之启发式算法之十七:淘金优化算法(Gold Rush Optimizer, GRO)

        淘金优化算法(Gold Rush Optimizer, GRO)是一种新兴的优化算法,由Kamran Zolfi在2023年提出。该算法受到淘金热时代淘金者如何找到金矿的启发,模拟了淘金者在河流或矿区中利用迁移、协作和淘金来寻找黄金的过程。

一、算法原理

        GRO算法受到淘金过程的启发,模拟了淘金者在不确定环境中通过试探和学习寻找金矿的过程。在淘金过程中,淘金者会不断地尝试不同的位置和方法,以寻找最佳的黄金矿脉。类似地,GRO算法在多维搜索空间中寻找最优解,其核心思想是模拟淘金者的这种行为。

二、算法步骤

        (1)初始化:随机生成一群淘金者(解决方案),分布在搜索空间中,每个淘金者对应一个适应度值 MF。

        (2)评估与选择:评估每个淘金者的性能(即解的质量),选择性能较好的淘金者进行下一轮搜索。

        (3)搜索更新:淘金者根据当前位置、历史信息以及其他淘金者的信息更新其位置。这可能包括随机搜索、向优秀淘金者学习等策略。

        (4)探矿者的迁移阶段:在发现金矿后,淘金者迁移到那里获取黄金。最富金矿的位置是搜索空间的最佳点,使用最佳金矿勘探者的位置来估计最佳金矿的位置。

        (5)金矿开采:每个淘金者都会在金矿区开采更多的黄金,其位置被视为金矿的大致位置。

        (6)探矿者之间的合作:探矿者之间进行合作,以提高寻找金矿的效率。

        (7)探矿者搬迁:金矿勘探者不断移动,他们决策中的一个关键参数是获取更多的黄金。通过评估功能对这两个位置进行比较,如果目标函数的价值有所提高,金矿勘探者就会更新其位置;否则,它保留在先前的位置。

        (8)终止条件:重复评估与搜索更新过程,直到满足特定的终止条件,如达到最大迭代次数或解的质量达到预定标准。

图1 淘金优化算法流程图

、算法的数学表达

        1. 探矿者迁移

        最佳金矿勘探者的位置被用作最佳金矿位置。探矿者迁移到那里获取黄金,最富金矿的位置是元启发式算法执行过程中搜索空间的最佳点。

        模拟金矿探矿者向金矿的迁移公式为:

        计算探矿者向最佳金矿位置的迁移距离:

        更新探矿者的新位置:

        其中,X*为最佳金矿的位置,A_{1}C_{1}是算法参数,具体表述为:

        le为平衡因子:

### IGBT 和 MOS管的工作原理 绝缘栅双极型晶体管(IGBT)是一种复合全控型电压驱动式功率半导体器件,它结合了金属氧化物半导体场效应晶体管(MOSFET)和双极结型晶体管(BJT)的优点。IGBT具有高输入阻抗、快速开关速度以及低导通压降的特点[^3]。其工作原理基于门极信号控制集电极电流的流动,当施加正向门极电压时,IGBT进入导通状态;而反向或零门极电压则使其截止。 相比之下,MOS管主要分为增强型和耗尽型两种类型,其中N沟道增强型MOSFET最为常见。它的基本操作依赖于通过改变栅源之间的电压来调节漏源间的电阻大小,从而实现对电路中电流强度的有效管理[^4]。具体而言,在达到阈值电压之后,随着Vgs进一步增加,通道宽度扩大,允许更多的载流子穿越设备完成传导过程。 ### GRO 的工作原理及其应用场景 淘金优化算法Gold Rush Optimizer, GRO),作为一种新兴的元启发式算法,模仿了淘金者的活动模式来进行问题求解。此算法利用三个关键算子——勘探、迁移与协作,分别对应着随机搜索新区域的能力、逐步接近最优解的趋势以及群体间的信息共享机制[^2]。这些特性使得GRO能够在复杂空间内寻找最佳解决方案的同时保持良好的收敛性和鲁棒性。 关于GRO的应用领域非常广泛,涵盖了但不限于以下几个方面: - **工程优化**:如天线设计中的尺寸形状最优化等问题; - **路径规划**:适用于机器人导航或者物流配送路线安排等领域; - **故障诊断**:用于检测电力系统异常情况下的潜在隐患部位定位等任务。 值得注意的是,尽管上述三种技术各自独立发展起来并拥有不同的理论基础和技术背景,但在某些特定场合下也可能存在交集。例如,在新能源汽车电机控制系统里,既需要用到高效的功率转换元件像IGBT/MOSFET这样的硬件支持,同时也可能借助先进的计算方法比如GRO去提升整体效率表现或是降低能耗水平等方面做出贡献。 ```matlab % MATLAB 实现简单版 GRO 算法框架 (伪代码形式展示) function [BestSol,BestFit]=Simple_GRO(MaxIter,NVar,LB,UB) % 初始化种群... for Iter=1:MaxIter % 执行勘探阶段 ... % 进行迁移处理 .. % 完成个体间协作更新.. % 记录当前迭代的最佳解信息. end end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值