Fast-lio个人总结

文章详细阐述了Lidar与IMU数据融合进行定位的过程,包括Lidar数据的降采样和去畸变,IMU的初始化和惯性解算,以及两者的时间状态对齐。通过误差卡尔曼滤波进行优化,构建局部地图并拟合平面,实现精确的动态环境感知。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lidar第一帧作为基坐标

1、lidar原始数据预处理默认不提取特征,对原始数据间隔式(间隔3个点)降采样提取。

2、imu初始化、惯性解算、误差分析、状态、协方差预测

3、Lidar与imu时间状态对齐

4、Lidar去畸变

5、构建局部地图,提供最近点索引,最小二乘方法拟合平面,构建点面残差

6、误差卡尔曼滤波

一、IMU

IMU初始化:计算加速度、角速度均值,利用均值计算方差。

IMU惯性解算、误差分析:状态、协方差预测

惯性解算:

利用相邻两个时刻的imu数据,采用离散中值法作为运动方程输入的加速

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值