双重差分法(DID)入门必看

双重差分(Differences-in-Differences,DID),其常用于政策评估效应研究,比如研究‘鼓励上市政策’、‘开通沪港通’、‘开通高铁’、‘引入新教育模式’等效应时,分析效应带来的影响情况。

比如:两类地区A和B,在2020年A类地区没有开通高铁,B类地区没有开通。那么开通高铁对于GDP的影响情况如何呢?

涉及两个关键数据,分别是Treated和Time,此处Treated为地区(A和B两个地区),以及时间项Time(高铁开通前和开通后)。

同时研究‘开通高铁’参于gdp的影响,那么被解释变量Y即为gdp,与此同时还涉及可选的控制变量(控制变量为可选项,多数情况下并不需要),比如教育投入,人口或对外投资情况等,如下表说明:

preview

特别提示:

  • Treated只能为数字0或1,且一定包括此2个数字。其用于标识研究‘效应’对应的组别,数字0标识‘控制组’,数字1标识‘实验组’,一定需要这样处理。
  • Time只能为数字0或1,且一定包括此2个数字。其用于标识研究‘时间’对应的组别,数字0标识‘before’(实验前),数字1标识‘after(实验后),一定需要这样处理。

理论上,双重差分研究可在很大程度上避免数据内生性问题。‘政策效应’通常为外生项,因而不存在双向因果关系,比如开通高铁影响gdp,gdp同时影响开通开通。与此同时,双重差分也有着一定的前提性要求,通常其希望满足‘平行趋势假设’(Parallel Trend Assumption),即time项为0时,即比如开通高铁前,A类和B类两类地区的gdp数据需要无明显的差异性。

至于‘平行趋势假设’(共同趋势)的检验,其有多种检验方式。包括t检验法,‘交叉项’显著性检验法,F统计量检验法,图示法。具体说明如下:

preview

针对‘交互项显著性检验法’或‘F统计量检验法’,时间项可能仅为2期(实验前和实验后),也可能为多期m期(m>2),那么哑变量设置后,放入分析的交互项为‘实验前时的交互项’,如下表说明:

preview

关于哑变量说明:https://spssau.com/helps/otherdocuments/dummy.html

如果是使用t检验法,SPSSAU在进行DID分析时默认有提供,如果是使用‘交互项显著性检验法’或者‘F统计量检验法’,可先将时间项作哑变量处理后,与treated项作交互项,然后进行线性回归(SPSSAU通用方法里面的线性回归或计量研究里面的OLS回归均可)。如果是使用‘图示法’,则使用SPSSAU【可视化->簇状图】完成。

背景

某地区(实验组,B地区)通过法律将最低工资从每小时4.25美元提高中到5.05美元,但相邻的另一地区(控制组,A地区)保持不变。某研究人员收集实施新法律前后就业人数数据,使用DID差分法进行研究‘提高最低工资’是否有助于‘就业人数增加’,即提高最低工资是否会提升民众的就业积极性。

此案例时:treated为地区(数字0为控制组即A地区,数字1为实验组即B地区)。Time为时间(数字0为法律实施前,数字1为法律实施后)。研究的效应项即被解释变量Y为‘就业人数’。与此同时还有另外3个控制变量。

理论

双重差分法DID,其通常用于政策效应类研究。共涉及两项,分别是实验组别treated(数字0表示控制组,数字1表示实验组),和时间项time(数字0表示实验前,数字1表示实验后)。一般希望在实验前即time为0时,实验组别数据基本保持一致性,即满足‘平行趋势假设’。‘平行趋势假设’检验有多种方式,建议查看本页面中相关说明。

比如本案例可使用SPSSAU的簇状图进行‘平行趋势假设’查看,如下图可以看到,实验前时两个组别的‘从业人数’即效应水平基本完全一致,说明满足‘平行趋势假设’,因而可以继续分析,当然也可使用实验前时,控制组和实验组效应值的差异情况进行检验,SPSSAU默认有提供。

操作

本案例操作截图如下,案例中带3个控制变量,如果没有控制变量可直接不放入即可,如下:

SPSSAU输出结果

SPSSAU共输出5类表格,分别是DID模型描述统计,DID模型结果汇总,t 检验(Before),t 检验(After),OLS回归分析结果。说明如下:

preview

5 文字分析

preview

上表格展示不同实验组别,以及实验前后时的样本分布情况。本案例共有155个实验样本,77个为实验前,78个为实验后。

preview

上表格展示DID模型最终结果。分别包括实验前和实验后时,控制组或实验组的效应值水平(特别提示,效应值是一种量化指标,并非被解释变量从业人数的平均值(但通常接近于平均值),数学原理上其为ols回归的回归系数值)。

上表格显示:在实验前before状态时,实验组和控制组的差分效应量为-0.611,并且没有呈现出显著性(p = -0.556>0.1),即说明实验前时,实验组和控制组的效应水平基本一致并没有明显的差异性,也即说明满足‘平行趋势假设’。

实验后after状态时,实验组和控制组的差分效应量为2.324,并且呈现出显著性(p = 0.024 < 0.05),即说明在实验后时间点时,实验组的效应值明显高于控制组效应值。

最终查看应该以diff-in-diff,即最终的双重差分值,上表格时,双重差分效应值为2.935且呈现出显著性(p = 0.045 < 0.05),也即说明双重差分效应显著,即说明‘提高最低工资’是否有助于‘就业人数增加’,提高的平均效应水平为2.935。

preview

上表格展示实验前状态时,控制组和实验组两类别下被解释变量或控制变量的差异情况。通常仅关注被解释变量的差异性即可,从上表格可知,控制组和实验组并没有呈现出显著性(p = 0.978 > 0.05),也即说明实验前时控制组和实验组的‘从业人数’并没有明显的差异性,即说明数据通过‘平行趋势假设’。

preview

上表格展示实验后状态时,控制组和实验组两类别下被解释变量或控制变量的差异情况。通常仅关注被解释变量的差异性即可,从上表格可知,控制组和实验组呈现出显著性(p = 0. 043 < 0.05),也即说明实验前时控制组和实验组的‘从业人数’呈现出明显的差异性,说明实验后状态下实验组和控制组的平均水平有着显著性差异,而且实验组(19.949)明显高于控制组(17.065)。

preview

上表格展示OLS回归结果,其为DID差分模型的数学原理,比如上表格中treate*time这一交互项的回归系数值为2.935即为‘DID模型结果汇总’表格中的Diff-in-Diff效应值。

剖析

涉及以下几个关键点,分别如下:

  • 如果为多期数据,比如实验前为2018/2019共2年数据,实验后为2021/2022共2年数据。那么需要处理成time为0和1,即实验前和实验后的数据格式
  • Treated只能为数字0或1,且一定包括此2个数字。其用于标识研究‘效应’对应的组别,数字0标识‘控制组’,数字1标识‘实验组’,一定需要这样处理。
  • Time只能为数字0或1,且一定包括此2个数字。其用于标识研究‘时间’对应的组别,数字0标识‘before’(实验前),数字1标识‘after(实验后),一定需要这样处理。
  • '平行趋势假设'(共同趋势)的检验,其有多种检验方式。包括t检验法,‘交叉项’显著性检验法,F统计量检验法,图示法等,可查阅本页面上方说明。

「更多内容登录SPSSAU官网了解」

PSM-DID即Propensity Score Matching and Difference-in-Differences,是一种结合了倾向得分匹配(PSM)与双重差分(DID)两种方法的技术,在经济学和社会科学领域被广泛应用于评估项目干预效果或政策变化的影响。 ### 倾向得分匹配 (PSM) 这种方法用来解决样本选择偏差的问题。当研究对象不是随机分配给处理组和对照组时可能出现这种偏差。通过估计一个单位接受治疗的概率——这个概率被称为倾向得分,可以创建出更相似的比较群体来减少混淆因素带来的影响。 ### 双重差分 (DID) 此方法旨在衡量随时间推移而发生的事件对特定群体的效果。它利用的是实验前后的数据对比以及受试者之间是否存在显著差异的信息。具体来说,就是计算处理前后两期的变化量之差,并将其归因为所考察的因素。 ### PSM-DID 结合应用 两者结合起来能够更好地控制不可观测的选择效应和其他混杂变量。先用PSM找到最接近实际条件下的配对案例,之后再运用DID去测量这些经过筛选的数据点之间的长期趋势变动情况。这样不仅可以提高估计精度还可以增强因果关系解释力。 #### 实现方式 实现PSM-DID通常需要借助统计软件包完成,例如Stata、R或其他支持高级计量分析功能的语言环境。以下是简化的流程概述: - 收集并整理好包括协变量在内的面板数据; - 利用Logistic回归或者其他分类算法构建倾向分数模型以预测个体属于哪个群组的可能性; - 对照组中寻找与处理组成员具有相同或相近倾向值的对象形成匹配集合; - 报告最终的结果同时考虑进行敏感度测试确保结论稳定可靠。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值