这篇博客主要是大致总结一下我最近看的两篇3D目标检测的论文Frustum PointNets和PointRCNN。我本科毕业设计做的是点云物体分类算法的研究,最近提前进入了研究生生活,目前在看三维物体的目标检测,主要觉得纯粹的点云物体分类在实际应用中的意义不是很大,真正贴合实际的是大型室外场景的点云语义理解或三维目标检测。但也不能说点云物体的分类毫无用处,有些3D目标检测算法正是在分类算法的基础上提出的,比如我接下来正要说的Frustum PointNets。
Frustum PointNets
这篇论文的作者相信大家也很熟悉了,正是提出了PointNet和PointNet++的斯坦福大学博士Charles R. Qi,实打实的大佬一枚。
由于室外场景点云数据的量很庞大,因此直接对三维物体进行搜索太过浪费时间和资源。Frustum PointNets的思想是,首先利用先进的二维目标检测算法得到物体在图像上的选框(proposal),其次根据视觉原理确定物体在三维场景中的四棱台区域,然后利用PointNet网络在四棱台区域里将物体分割出来,最后利用PointNet++网络确定物体的准确位置。算法的核心思想就是化繁为简,既然PointNet和PointNet++没法对大型室外场景的点云数据进行处理,就先通过一个成熟的2D目标检测器把物体可能存在的区域范围缩小,再结合先进的3D深度学习进行物体定位。这种2D结合3D的方法的确具有很强的代表性,后面还会遇到不少同类型的算法。</