大模型学习笔记 - LLM模型架构

LLM 模型架构

1. LLM 核心模型 Transformer

这是《大语言模型》这本书的学习笔记。详细内容可以参考书籍。

目前主流的大模型都是基于Transformer模型进行设计的。Transformer是由多层的多头注意力模块(Multi-Head Self-Attention) 堆叠而成的神经网络模型。
原始的Transformer是由Encoder 和Decoder两部分构成,而这两部分是可以独立使用的(如BERT 单独使用Encoder, GPT单独使用Decoder).
大语言模型与早期的预训练语言模型相比,主要是使用了更长的向量维度、更深的层数、更大的数据集、进而包含了更大规模的模型参数。LLM主要使用Decoder 架构,对Transformer本身结构和配置改变不大。

关于Transformer的详细介绍可以参考我之前的学习笔记:Attention

  1. 输入端:x = v + p (词向量 + 位置编码)

    1. 输入词元序列 首先经过一个Embedding Module转成词向量。
    2. 位置编码 (由于Transformer无法识别序列顺序所以 通过位置编码来表示序列中的位置)
      1. 位置编码也有绝对位置编码,相对位置编码。这个后续讨论。
  2. 多头注意力机制(MHA)

    1. 多头注意力机制是Transfomer的核心技术,能够直接建模任意距离的词元之间的相互关系。之前RNN迭代利用前一个时刻状态更新当前时刻状态,在处理长文本时会出现梯度爆炸或消失的问题。在卷积神经网络中只有同一个卷积核的窗口中的词元可以直接交互,通过堆叠层数来实现远距离词元信息交互。
    2. 多头注意力机制 = 多个自注意力模型组成。
      1. 每个模块将输入词元映射成Query,Key,Value 三个矩阵。然后对于每个query,与所有没有被mask的key计算点积,点积值除以 D \sqrt{D} D (D是key的向量维度),然后传入softmax中计算权重。权重与Value加权和得到最终输出。
      2. A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T D ) V Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{D}})V Attention(Q,K,V)=softmax(D QKT)V 其中 Q = X W Q Q=XW^Q Q=XWQ, K = X W K K=XW^K K=XWK, V = X W V V=XW^V V=XWV
      3. 多头注意力机制 使用了 H 组 结构相同但是参数不同的自注意模块。输入序列通过不同的权重映射为K Q V,每组KQV经过上面计算映射成一个Head得到自注意力输出,不同 Head 被拼接在一起,通过一个权重矩阵 W O W^O WO(H*H)进行映射,产生最终的输出。 M H A = C o n c a t ( h e a d 1 , . . h e a d N ) W O MHA=Concat(head_1,..head_N)W^O MHA=Con
### 使用大模型进行笔记本电脑故障诊断或性能评估的方法 #### 基于数据驱动的故障预测方法 在现代技术环境中,基于数据驱动的故障预测方法被广泛应用于各种复杂系统的维护和管理中。这种方法通过收集大量的历史运行数据以及实时监测数据来训练机器学习算法,从而实现对潜在故障的有效识别和预警[^1]。 对于笔记本电脑而言,可以通过安装传感器或者利用现有的硬件监控工具获取CPU温度、硬盘健康状态(S.M.A.R.T.)、风扇转速等关键参数作为输入特征;同时也可以考虑加入用户的操作习惯(如开机时间长度)、软件环境配置等因素进一步丰富特征集。这些多源异构的数据经过预处理之后会被送入预先构建好的深度神经网络或其他类型的高级别AI框架内完成建模过程。 #### 构建并优化适合的任务专用模型架构 为了提高预测精度,在设计具体的大规模预训练语言模型(Large Language Model, LLM)或者其他形式的人工智能解决方案时应充分考虑到目标领域特点: - **选择合适的损失函数**:针对分类任务可采用交叉熵损失(Cross Entropy Loss),而对于回归型问题则更适合均方误差(Mean Squared Error,MSE); - **引入注意力机制(Attention Mechanism)** :有助于捕捉长时间序列中的依赖关系,尤其适用于分析由不同时间段累积而成的日志文件; - **迁移学习策略的应用**:如果存在相似场景下已经成功部署过的优秀实例,则可以直接加载其权重初始化新项目,减少从零开始所需的时间成本与计算资源消耗。 此外,还需定期依据实际应用场景调整超参设置,并持续跟进最新研究成果以便及时更新改进现有方案[^3]。 ```python import torch from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) def predict_fault(log_text): inputs = tokenizer(log_text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits).item() return "Faulty" if prediction == 1 else "Normal" ``` 此代码片段展示了如何使用BERT模型来进行简单的日志文本分类任务,判断给定的日志条目是否指示了可能存在的硬件问题。当然这只是一个非常基础的例子,真实世界里的应用通常会更加复杂精细。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值