Jetson Xaiver NX相关教程(详细版)

一、参考资料

Jetson nano/NX 部署Yolo v5过程记录

二、相关介绍

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、软件安装

2.1 jetson-stats

2.1.1 相关介绍

jetson-stats是一个开源软件包,用于监测和控制Nvidia Jetson设备的运行状态。
Jetson-stats包含以下工具:

  • jtop
  • jetson_config
  • jetson_release
  • jetson_swap

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

2.2.2 安装jetson-stats

https://github.com/rbonghi/jetson_stats

sudo -H pip install -U jetson-stats

或者
sudo pip install -U jetson-stats

2.2 烧录系统镜像

Jetson Xavier NX 烧写系统镜像

  1. 使用SD Formatter格式化SD卡
  2. 用Win32 Diskimg写入镜像

2.3 安装输入法

在Jetson Xavier NX安装中文输入法(googlepinyin中文输入法)

Jetson Xavier NX安装中文输入法

Jetson Xavier NX是arm架构,而sougoupinyin只支持amd架构,不支持arm架构,因此可以使用采用googlepinyin。

sudo apt-get install fcitx-googlepinyin

E: Unable to locate package fcitx-googlepinyin

先执行: sudo apt install fcitx,然后再执行安装googlepinyin的命令。

sudo apt install fcitx
sudo apt install googlepinyin

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 安装pip

wget https://bootstrap.pypa.io/pip/3.6/get-pip.py
python3 get-pip.py

四、重要说明

4.1 相关经验

  1. 自带的opencv4就别卸载了,安装其他版本很麻烦,且还原opencv4也麻烦。
  2. 系统自带的swap交换空间为4GB,如果出现编译C/C++程序卡死的情况,可以拓展4+8=12GB。
  3. jetson增加虚拟内存
    Jetson Nano 相关配置-安装中文输入法、增加虚拟内存、安装VS Code…

4.2 jetson系列性能对比

Jetson NX和Nano上使用TensorRT部署YOLOv4模型速度测试

Jetson CUDA 算力表

GPU浮点算力(FP16)整点算力(INT8)Compute Capability
Jetson AGX Xavier11 TFLOPS32 TOPS7.2
Jetson Xavier NX6 TFLOPS21 TOPS7.2
Jetson TX21.3 TFLOPS不支持6.2
Jetson Nano0.5 TFLOPS不支持5.3

目标检测推荐的模型:yolov5s

NX性能果然非常强,轻松实现近百fps的性能。从数据可以看到,使用INT8精度和使用DLA都能提升推理性能。

以小目标检测数据集测试,实测IN8相比于FP16,精度下降了15-25%,影响相当大。按照经验,做项目的时候,如果时间紧、效果要求高,一般使用FP16精度推理。如果做产品并且研发时间充足,会考虑用INT8提升推理性能。

经过测试,NX的DLA即支持FP16精度,也支持INT8精度。不过DLA只支持Conv,Mul,MaxPool,Concat,Sigmoid等少量算子,并且需符合特定顺序,其余算子会Fallback到GPU,这会拖累性能提升幅度。

4.3 风扇控制

Xavier NX的风扇在系统内核中有一套自动控制温度和转速的算法,经过观察,大约在40度左右的时候会自动开启风扇进行散热,在核心温度大约低于39度时候会自动关闭散热风扇。

设置功率
Jetson 系列——jetson xavier nx和nano设置工作模式设置功率

4.4 SD卡镜像备份和复制

Jetson 系列——jetson nano制作SD卡备份镜像以及还原
经验:

  1. 将部署好的jetson nano复制到新机器上,需要SD卡的镜像和复制操作。
  2. 在jetson nano上将系统及环境配置好之后,在各种研究试验时,有可能将原环境破坏,工作内容丢失,所以很有必要将原始准备好的环境进行备份。备份好之后,可以恢复工作,也可以将备份好的环境用到新的机器上。工程上部署新机器,也可以通过这种方式部署。

4.5 Xaiver NX优化Tips

英伟达Xavier NX工业AI应用实战

  1. 提前做好设备散热测试,需要主动散热。在压力测试下,功耗轻松到达30W,芯片温度很容易达到75度。一旦超过80度,CPU会降频到350MHz,性能急剧下降造成系统运行不稳定。
  2. 8GB内存不够用。系统开机占用1.2GB内存,开个Docker占用1.5GB内存,Redis缓存占用1.2GB内存,TensorRT开1个模型占用1.2GB内存,开3G模型占用3.6GB内存。为此,NVIDIA特意发布了16GB Xavier NX,价格增加100美元。
  3. NX缺货和涨价令人头疼,好不容易开发完应用要批量出货,发现NX缺货厉害,设备成本都在5000+都不一定买到货。

五、相关项目

5.1 yolov5吸烟识别项目

Jetson 系列——基于yolov5对是否吸烟的检测,部属于jetson xavier nx,使用tensorrt、c++和int8加速,可用于边缘计算

5.2 yolov5安全帽检测

Jetson 系列——基于yolov5对反光衣和安全帽的检测,部属于jetson xavier nx,使用tensorrt、c++和int8加速,可用于边缘计算
Jetson 系列——基于yolov5对工地头盔的检测,部属于jetson xavier nx,使用tensorrt、c++和int8加速,可用于边缘计算

5.3 yolov5口罩检测

Jetson 系列——基于yolov5对是否带口罩的检测,部属于jetson xavier nx,使用tensorrt、c++和int8加速,可用于边缘计算

5.4 烟雾检测

Jetson 系列——基于yolov5对火源或者烟雾的检测,使用tensorrt、c++和int8加速

5.5 deepsort目标跟踪

Jetson 系列——基于deepsort的物体跟踪使用tensorrt和c++加速
Jetson 系列——基于yolov5和deepsort的多目标头部识别,跟踪,使用tensorrt和c++加速

5.6 Jeston TX2的GStreamer推流操作

Jetson 系列——nvidia jetson nano推流操作和 jetson xavier NX GStreamer 推流操作

六、可能出现的问题

6.1 找不到pip指令

WARNING: The scripts pip, pip3 and pip3.6 are installed in '/home/yoyo/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
yoyo@ubuntu:~/Downloads$ pip list
bash: pip: command not found
yoyo@ubuntu:~/Downloads$ pip3 list
bash: pip3: command not found
解决办法:
sudo gedit ~/.bashrc

export PATH=/home/yoyo/.local/bin:$PATH

source ~/.bashrc

6.2 sudo pip 找不到指令

【Linux】sudo pip 找不到命令解决方法

yoyo@ubuntu:~$ sudo -H pip install -U jetson-stats
sudo: pip:找不到命令
解决办法:
1. 编辑/etc/sudoers
sudo gedit /etc/sudoers

Defaults env_reset
修改为
Defaults !env_reset

2. 编辑配置文件~/.bashrc
sudo gedit ~/.bashrc

添加:
alias sudo='sudo env PATH=$PATH'

3. 使配置生效
source ~/.bashrc
### 回答1: Jetson NX Torch 是一款基于Jetson NX开发板的深度学习系统,它将Jetson NX的计算能力与Torch深度学习框架相结合,提供了强大的计算和算法支持。Jetson NX是一款高性能的AI开发板,配备了六核NVIDIA Carmel ARM CPU和384个NVIDIA CUDA核心的GPU,以及8GB的LPDDR4x内存。这使得Jetson NX Torch成为一个非常强大的深度学习工具。 利用Jetson NX Torch,开发者可以快速搭建和训练各种深度学习模型。Torch是一个非常流行的深度学习框架,它提供了丰富的工具和库,使得开发者能够轻松地进行模型的构建、训练和部署。同时,Jetson NX的强大计算能力也可以提供快速且高效的计算,加速模型的训练和推理过程。 Jetson NX Torch具有广泛的应用领域。例如,在计算机视觉领域,可以利用Jetson NX Torch进行对象检测、图像分割和人脸识别等任务。在自然语言处理领域,可以使用Jetson NX Torch进行文本分类、机器翻译和语音识别等任务。此外,Jetson NX Torch还可以应用于无人驾驶、机器人控制和智能家居等领域,帮助实现智能化和自动化。 总之,Jetson NX Torch是一个强大的深度学习系统,结合了Jetson NX的高性能计算和Torch的丰富功能,为开发者提供了一个高效、方便和灵活的开发平台,用于构建和部署各种深度学习模型。 ### 回答2: Jetson NX Torch是基于NVIDIA Jetson NX平台的一个Torch深度学习框架。由于深度学习在计算机视觉、自然语言处理等领域具有广泛的应用,Jetson NX Torch可以提供高性能的计算能力和自定义网络架构,使开发者能够快速搭建深度学习模型和应用程序。 Jetson NX Torch利用NVIDIA的GPU加速技术,具有强大的计算能力,可以加速模型的训练和推理过程。此外,Jetson NX Torch还支持多种预训练的深度学习模型,如ResNet、YOLO等,开发者可以直接使用这些模型进行任务处理,或者通过微调进行模型的定制。 此外,Jetson NX Torch还提供了丰富的GPU加速库和工具,如cuDNN、CUDA等,使开发者能够充分利用GPU资源,提升系统的性能。同时,Jetson NX Torch支持多种编程语言,如Python和C++,方便开发者进行开发和调试工作。 综上所述,Jetson NX Torch是一个强大的深度学习框架,可以在Jetson NX平台上进行深度学习任务,提供高性能的计算能力和各种深度学习模型的支持。它为开发者提供了丰富的工具和库,使其能够快速搭建和部署深度学习模型和应用程序,满足各种视觉和语言处理任务的需求。 ### 回答3: Jetson NX Torch是一款由NVIDIA开发的人工智能计算平台。它结合了Jetson NX和Torch软件框架,为用户提供了一种快速且高效的方式来训练和部署深度学习模型。 Jetson NX是一款高性能、低功耗的嵌入式计算设备,它搭载了NVIDIA的Volta架构GPU和六核心ARM CPU。这使得Jetson NX能够在边缘设备上进行实时的深度学习推理任务,例如图像处理、目标检测和语音识别等。 而Torch是一个深度学习框架,它提供了丰富的工具和库,用于开发和训练神经网络模型。Torch的优势在于其易用性和灵活性,它支持动态图和静态图两种计算图模型,并提供了丰富的预训练模型和优化算法。 将Jetson NX和Torch结合在一起,可以提供一个强大的AI计算平台,用于构建和部署高性能的深度学习模型。用户可以使用Torch开发自定义的神经网络模型,并利用Jetson NX的强大计算能力进行训练和推理。此外,Jetson NX Torch还提供了一些辅助工具和库,用于数据加载、模型优化和部署等任务。 总之,Jetson NX Torch是一种高性能、易用的人工智能计算平台,它将Jetson NX的强大计算能力与Torch的灵活性和丰富的工具集相结合,为用户提供了一种高效的方式来进行深度学习任务。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花花少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值