保姆级教程来袭!AI笔记神器NotebookLM超全攻略

1. 什么是 NotebookLM? 📚

NotebookLM 是 Google 推出的一款智能笔记助手,它能帮你快速理解和分析各种文档内容。不管是学习、工作,还是研究,它都能帮你事半功倍!在我经常用到的场景中,帮我写文献综述(带引用)、量子速读快速了解一个新的领域、生成博客参与讨论(目前只支持英文)、或者把和别人交流讨论的过程录成mp3,然后用它转成会议纪要......这些场景真的有实实在在帮助到我!所以推荐推荐推荐!

网址:https://notebooklm.google/

快来新建一个属于自己的 notebook 吧!!!(需要科学上网)

图片

图片

为什么选择 NotebookLM?

  • 🎯 超强的文本理解能力
  • 💡 智能问答和总结功能
  • 📝 可以保存笔记和对话记录
  • 🔒 安全可靠的数据保护
  • 🆓 完全免费使用(欸!真香!)

2. 使用场景详解 🎯

2.1 文献梳理助手

使用步骤:

  1. 1. 上传文献PDF,导入来源(最多可支持50篇文献)

  2. 2. 点击Studio下的小方框(时间轴、简报文档等等)

  3. 3. 自由聊天,比如研究主要观点、创新点、局限性、研究方法、实验设计等

  4. 图片

时间线(发展历程)、简报文档、自由聊天(带引用文献):(这不就是文献综述的过程吗?)

下图为从左到右三种用法:

图片

2.2 量子速读(快速了解一个新的领域)

一般来说,快速了解一个新的领域在NotebookLM里面就是四部曲,分别是:学习指南、简报文档、常见问题解答、时间轴。看完这四个文档,通过提问-回答的方式、时间线等方式大致就可以快速了解一个新的领域。对于我们不管在科研场景,还是工作场景,难免碰到自己不熟悉的领域,这样是一种量子速读的方式!

面对大量文档不知从何下手?可以试试这样:

图片

图片

2.3 简历助手(模拟面试)

针对简历模拟面试,提问问题,通过客观的视角来分析自己的优劣势,以及和岗位的匹配度!也可以加入播客对话锻炼英文hhhh(祝大家都有满意的offer!)

图片

图片

图片

2.4 会议纪要神器

开会记录太慢?让 NotebookLM 来帮忙:

  1. 1. 上传会议录音

  2. 2. 自动生成:

    • 会议主要议题
    • 关键决策点
    • 任务分配清单
    • 后续行动计划
    • 时间线

图片

图片

图片

图片

😀

小技巧:

  • 用清晰的问题引导AI(同时也用自定义的场景来引导AI播客)
  • 要求按照时间顺序整理(很清晰!)
  • 遇到重点内容可“转为笔记”保存在右侧栏

还有更多实用场景 🎮!!!!

2.5 学习笔记助手

还在为做笔记烦恼吗?NotebookLM可以帮你:

  1. 1. 课程内容整理与总结

  2. 2. 知识点关联分析

  3. 3. 生成复习重点

  4. 4. 制作思维导图

(都是细糠啊啊啊啊!早知道高中就这么学习来着!

😋

使用技巧:

  • 上传课件或教材PDF
  • 设置不同的学习目标
  • 通过提问深化理解
  • 用时间轴梳理知识脉络

2.6 研究方案规划

科研工作者的得力助手:

  1. 1. 实验方案设计

  2. 2. 数据分析建议

  3. 3. 研究思路拓展

  4. 4. 相关工作推荐

😆

操作步骤:

  • 上传相关领域文献
  • 描述研究目标和现有条件
  • 让AI提供方案建议
  • 追问细节和可能的问题

2.7 创意写作助手

激发你的创作灵感:

  1. 1. 内容框架设计

  2. 2. 素材整理与扩充

  3. 3. 多角度写作建议

  4. 4. 风格调整与润色

🤗

实用技巧:

  • 上传参考资料
  • 设定写作风格和目标读者
  • 通过对话激发灵感
  • 保存优秀表达方式

3. 使用小贴士 💡

  1. 1. 提问技巧

    • 问题要具体明确(做好领导——“清晰的指令”)
    • 善用追问深入话题(有效的互动)
  2. 2. 效率提升

    • 保存常用提示语
    • 建立知识库
  3. 3. 注意事项

    • 定期保存重要内容(点击“转为笔记”or“来源”)
    • 检查AI生成的内容(因为AI有“幻觉”,所以需要人为的再看看~)
    • 关键信息需要核实(yep)

4. 常见问题解答 ❓

Q:NotebookLM 支持哪些文件格式?

A:支持 PDF、Markdown、txt等常见文本格式,还支持网站、youtube视频链接以及Google幻灯片(识别图片)

图片

Q:可以同时处理多个文档吗?

A:可以,建议相关文档一起上传(最多50篇文献),便于对比分析。尤其是论文党需要写文献综述的部分,那简直香的不要不要的了!有引用、有来源,妥妥直接成品(温馨提示:当然还是要人为的过一下哈~)

Q:生成的内容准确吗?

A:AI生成内容仅供参考,重要信息请务必核实。(任何AI工具都会有,因为本质是基于概率的,会产生“幻觉”)

结语 🎉

NotebookLM 是我们学习工作的得力助手,希望这份教程能帮你快速上手,提升效率!在工作场合或者学习场合,学会第一时间 link 到 AI 工具,使用 AI 工具辅助我们学习,真的很高效!最后:工具只是辅助,关键还是要培养自己的思考能力~

### NotebookLM IT 技术相关信息 #### 功能预览与发展 在今年五月的 I/O 大会上,展示了 NotebookLM 的新功能预览版。当时发布的版本是一个基于内容的聊天界面,受到了许多用户的欢迎和使用。与此同时,研究团队正在探索 Google 推出的新模型和技术升,例如即将发布的 Gemini 1.5 模型,旨在进一步提升 NotebookLM 的性能和服务质量[^1]。 #### 技术架构与实现 为了更好地理解 NotebookLM 的技术架构,可以从以下几个方面来探讨: - **自然语言处理 (NLP)**:作为一款基于对话的人工智能产品,NotebookLM 利用了先进的 NLP 技术,能够理解和生成人类语言,提供更加流畅和智能化的服务。 - **机器学习框架**:该平台可能采用了 TensorFlow 或 PyTorch 等流行的深度学习库来进行训练和发展新的算法模型。这有助于持续改进系统的响应速度、准确性等方面的表现。 ```python import tensorflow as tf from transformers import TFAutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-cased') def classify_text(text): inputs = tokenizer(text, return_tensors='tf', truncation=True, padding=True) outputs = model(**inputs) predictions = tf.nn.softmax(outputs.logits).numpy() return predictions.argmax(axis=-1) classify_text("This is a test sentence.") ``` #### 应用场景拓展 除了基本的文字交流外,随着技术的进步,未来可能会看到更多创新的应用形式出现。例如,在教育领域内创建个性化的辅导机器人;或是应用于企业内部的知识管理系统中,帮助员工快速获取所需资料并提高工作效率等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值