腾讯混元Custom视频生成模型,主体一致性效果达到开源SOTA?(附代码运行流程)

在这里插入图片描述
根据官方资料,混元Custom模型在单人、非人物体、多主体交互等多种场景中,都能保持身份特征在视频全程的一致性与连贯性,避免“主体漂移”、“人物变脸” 等问题。

🔗详细内容请见本链接

该模型融合了文本、图像、音频、视频等多种模态输入,为视频生成提供丰富控制条件,创作者可依据需求灵活组合,实现多样化创意表达,呼应模型名称中的Custom一词。

🔗官网https://hunyuancustom.github.io/:
在这里插入图片描述
目前已开源单主体视频生成能力,即上传一张主体图片(比如一个人的照片),然后给出视频描述的提示词,模型就能识别图片中的身份信息,在不同动作、服饰与场景中生成连贯自然的视频内容。

目前已开源单主体视频生成能力,即上传一张主体图片(比如一个人的照片),然后给出视频描述的提示词,模型就能识别图片中的身份信息,在不同动作、服饰与场景中生成连贯自然的视频内容。

### State-of-the-Art Video Classification Models Video classification has seen significant advancements with deep learning techniques. Among these, several models stand out due to their performance and innovation. #### 1. TimeSformer TimeSformer introduces a transformer-based architecture specifically designed for video understanding tasks by effectively capturing spatiotemporal dependencies within videos[^4]. This model leverages self-attention mechanisms that allow it to focus on relevant parts of the input sequence without being constrained by fixed-size receptive fields common in convolutional networks. ```python import torch.nn as nn class TimeSformer(nn.Module): def __init__(self, img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12): super().__init__() # Define layers here def forward(self, x): # Forward pass implementation return output ``` #### 2. MViT (Multiscale Vision Transformers) MViT extends transformers into multiscale architectures where features are extracted at multiple resolutions simultaneously through hierarchical tokenization schemes[^5]. Such designs enable better handling of varying object sizes present in natural scenes captured via video recordings. #### 3. X3D (Extended 3D ConvNet) X3D builds upon earlier work like R(2+1)D but pushes further towards more efficient spatial-temporal modeling using factorized convolutions applied over extended temporal windows[^6]. For staying updated about cutting-edge research papers related to this field: - Arxiv Sanity Preserver provides curated lists based on community feedback. - Google Scholar alerts can notify one whenever new publications match specified keywords such as "video classification state of the art". --related questions-- 1. What datasets are commonly used for evaluating video classification algorithms? 2. How do attention mechanisms improve video analysis compared to traditional CNN approaches? 3. Can you provide examples of real-world applications benefiting most from advanced video classification technologies? 4. Are there any open-source implementations available for experimenting with these top-tier models mentioned above?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值