浅谈 R-CNN 、 Fast R-CNN、Faster R-CN

0. 前言
  • R-CNN 系列是目标检测的经典开端,包括后面的Fast RCNN等在内,提出了很多目标检测中的重要概念,是做目标检测必须要了解的。

  • 下面进行逐一介绍

一. R-CNN
  • 功能来自于结构,因此我们首先看网络结构
    在这里插入图片描述

上图中表明了R-CNN的框架,描述如下:

  1. 输入一张图片
  2. 基于Selective Search提取出提议区域(region proposal) ,也就是上图2.中的黄色框
  3. 因为CNN后面的全链接层需要固定大小的输入,这里我们把所有的region proposal缩放到所需要的大小(227 × 227 pixel size 见附录A),也就是变成了上图的warped region。对此时的region proposal应用CNN网络,进行特征提取。
  4. 将CNN提取后的特征,经过全链接层之后一部分放入SVM分类器,得到分类结果。另一路进行边框回归(Bounding-box regression),并应用非极大值抑制。
  • 讨论:从其结构可以明显看出,首先要得到大量的提议区域,这会消耗一定的时间,其次是对每个提议都应用CNN,其效率可想而知。但是足以作为深度学习在目标检测上的开山大作,给目标检测提供了一个新思路。
二. SPP Net

在这里插入图片描述

  • 该网络是对RCNN的改进。相比RCNN,SPP(空间金字塔变换)使用了共享卷积层,然后通过原图上的RoI映射到最后的卷积层,找到最后卷积层上对应的RoI。这些提议窗口尺寸是不同的,也不能直接输入到全连接进行分类。因此把这些提议窗口通过SPP层映射到相同的尺寸大小,便可以链接全连接层了。

  • 讨论:
    通过共享卷积层,提高了推理和训练速度
    最大的特点是通过特征金字塔进行尺寸适应

三. Fast R-CNN
  • 结构
    在这里插入图片描述
    1
  1. 给定图片
  2. 输入到卷积神经网络,进行特征提取,这一步不同于RCNN,这里使用了权值共享。这和上面的SPP Net是同样的操作。
  3. 同样是因为输入的图像尺寸可能不一致,而后面的全链接需要固定的输入尺寸。此处用RoI Pooling将CNN之后的特征统一到一个固定的大小。RoI Pooling 有被称为单层SPP,原因是之进行了一下Pooling操作,而SPP相当于进行了多尺度下采样。
  4. 将得到的固定尺寸特征输入全连接层,进行线性+softmax分类和bbox线性回归
  • 讨论
    相比于R-CNN,共享了CNN层
    相比SPP Net,RoI映射更快
四. Faster R-CNN
  • 结构

在这里插入图片描述

  • 和上一代相比,最大的不同是提出了RPN网络,用这个网络找到提议RoI。需要注意,RPN网络只负责找到是否有物体的RoI,分类还要在后面再加上分类器,用来确定具体属于哪一类。

  • 训练和测试####待更新

参考:

  1. fast rcnn
  2. rcnn 、 fast rcnn、faster rcnn
R-CNN(Region-based Convolutional Neural Networks)是一种目标检测算法,它通过两个阶段来检测图像中的目标物体。首先,R-CNN使用选择性搜索(Selective Search)算法生成一系列候选区域,然后对每个候选区域进行卷积神经网络CNN)特征提取和分类。R-CNN的主要缺点是速度较慢,因为每个候选区域都需要独立地进行CNN特征提取和分类。 Fast R-CNN是对R-CNN的改进,它通过引入RoI池化(Region of Interest pooling)来解决R-CNN中重复计算的问题。RoI池化可以将不同大小的候选区域映射为固定大小的特征图,从而使得所有候选区域可以共享相同的特征提取过程。这样一来,Fast R-CNN相比于R-CNN具有更快的速度。 Faster R-CNN是对Fast R-CNN的进一步改进,它引入了一个称为Region Proposal Network(RPN)的子网络来生成候选区域。RPN通过滑动窗口在特征图上提取候选区域,并为每个候选区域分配一个得分,然后根据得分进行筛选和排序。这种端到端的训练方式使得Faster R-CNN在目标检测任务上具有更高的准确性和更快的速度。 Mask R-CNN是在Faster R-CNN的基础上进一步发展的,它不仅可以进行目标检测,还可以进行实例分割。Mask R-CNNFaster R-CNN的基础上增加了一个分支网络,用于预测每个候选区域中目标物体的像素级掩码。这使得Mask R-CNN能够同时获得目标的位置信息和像素级别的语义信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值