R语言所有shape

### K-Shape聚类算法简介 K-Shape聚类算法专用于时间序列数据分析,旨在发现具有相似形状的时间序列模式。该算法通过迭代优化过程最小化簇内成员之间的距离,从而形成紧凑的簇结构[^1]。 ### R语言中的K-Shape实现 在R语言中,`dtwclust`包提供了对多种时间序列聚类方法的支持,其中包括K-Shape聚类。下面展示如何安装必要的软件包并执行简单的K-Shape聚类: #### 安装依赖包 首先需要确保已安装`devtools`和`dtwclust`这两个CRAN上的扩展库: ```r install.packages("devtools") library(devtools) install_github("alexiosg/dtwclust@v5.5.0") # 版本号可根据需求调整 ``` #### 加载所需库与准备数据集 加载所需的库,并创建或导入待处理的时间序列数据集合: ```r library(dtwclust) # 假设tsdata是一个列表形式存储的时间序列矩阵/向量 set.seed(1234L) # 设置随机种子以便结果可重复 n <- 10 # 时间序列数量 m <- 24 # 单条时间序列长度 tsdata <- replicate(n, sin(seq_len(m)), simplify=FALSE) for (i in seq_along(tsdata)) { tsdata[[i]] <- jitter(tsdata[[i]], amount=.1*i/n) } str(tsdata) ``` 上述代码片段模拟了一个含有正弦波形加上少量噪声干扰的小型时间序列样本集。 #### 执行K-Shape聚类操作 调用`tsclust()`函数指定使用K-Shape方法来进行聚类计算,同时设置期望得到的类别数目(即簇的数量): ```r result <- tsclust( series = tsdata, type="kshape", k=3, # 设定预期分类数为3 distance="sbd",# 使用标准化欧氏距离(SBD) centroid="mean",# 中心点定义方式 trace=TRUE # 显示中间日志信息 ) print(result$cluster) # 输出各时间序列所属簇编号 plot(result) # 绘制可视化图表查看聚类效果 ``` 此段脚本不仅完成了基于给定参数设定下的实际聚类任务,还利用内置绘图功能直观呈现了最终形成的各个簇形态及其内部成员分布状况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值