循环神经网络的参数学习之法

循环神经网络的参数可以通过梯度下降方法来进行学习。

        循环神经网络中存在一个递归调用的函数 𝑓(⋅),因此其计算参数梯度的方式和前馈神经网络不太相同.在循环神经网络中主要有两种计算梯度的方式: 随时间反向传播 BPTT 算法和 实时循环学习 RTRL 算法

随时间反向传播算法

        随时间反向传播 BackPropagation Through Time BPTT 算法的主要思想是通过类似前馈神经网络的错误反向传播算法 来计算梯度 .BPTT算法将循环神经网络看作一个展开的多层前馈网络 其中 每一层 对应循环网络中的“ 每个时刻 ”( 见图 6.2 ). 这样 循环神经网络就可以按照前馈网络中的反向传播算法计算参数梯度. 展开 的前馈网络中 所有层的参数是共享的, 因此参数的真实梯度是所有 “展开层” 的参数梯度之和。

计算复杂度 在BPTT 算法中 参数的梯度需要在一个完整的 前向 计算和 反向” 计算后才能得到并进行参数更新

实时循环学习算法

        与反向传播的 BPTT 算法不同的是 实时循环学习 Real-Time Recurrent Learning, RTRL 是通过前向传播的方式来计算梯度。

两种算法比较 RTRL算法和BPTT算法都是基于梯度下降的算法,分别通过前 向模式和反向模式应用链式法则来计算梯度. 在循环神经网络中 一般网络输出维度远低于输入维度, 因此 BPTT 算法的计算量会更小 但是 BPTT 算法需要保 存所有时刻的中间梯度, 空间复杂度较高 RTRL 算法不需要梯度回传 因此非常适合用于需要在线学习或无限序列的任务中。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
随梯度下降(Stochastic Gradient Descent,SGD)是一种常用的优化算,用于在循环神经网络(Recurrent Neural Network,RNN)中进行参数更新。RNN是一种具有循环连接的神经网络,可以处理序列数据。 在RNN中,每个时间步都有一个隐藏状态,该隐藏状态会根据当前输入和前一个时间步的隐藏状态进行更新。训练RNN的目标是最小化损失函数,而SGD是一种常用的优化算,用于找到损失函数的最小值。 SGD在RNN中的应用如下: 1. 初始化参数:首先,需要初始化RNN的参数,包括权重和偏置。这些参数将在训练过程中进行更新。 2. 前向传播:对于给定的输入序列,RNN会根据当前输入和前一个时间步的隐藏状态计算当前时间步的隐藏状态和输出。 3. 计算损失:使用损失函数来计算模型的预测输出与真实输出之间的差异。 4. 反向传播:通过计算损失函数对参数的梯度,可以得到每个参数对损失函数的贡献程度。然后,根据梯度下降的原理,更新参数以减小损失函数。 5. 参数更新:使用SGD算根据计算得到的梯度来更新RNN的参数。SGD会根据学习率和梯度的方向来更新参数值,使得损失函数逐渐减小。 6. 重复步骤2-5:重复执行前向传播、计算损失、反向传播和参数更新的步骤,直到达到停止条件(如达到最大迭代次数或损失函数收敛)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值