随着技术革新和人工智能AI的快速发展,生产力模式正在发生深刻变革。大模型技术的应用不仅加速了传统产业的智能化转型,还推动了新兴产业的布局。2023年下半年以来,多个政府会议强调了数字经济发展与新质生产力相结合的战略方向。在此背景下,AI与大模型的行业应用成为了推动生产力提升的关键。
1、AI产业规模与商业化路径
1.1 AI产业规模预测
根据艾瑞的测算,2023年中国AI产业规模约为2100亿元人民币,预计到2028年将达到8110亿元,复合年增长率为24%。短期内,API调用的增加和大模型产品的广泛应用将推动市场扩张,尤其在计算机视觉和语言处理领域。
图表:AI 产业规模预测
1.2 商业化路径展望
- B端市场
大模型的商业化路径在企业市场主要通过基础费用、模型精调、部署和云服务等方式实现。尽管目前价格战激烈,但这有助于降低试错成本,加速企业产品落地。通过与云服务提供商合作和技术优化,企业仍可以实现收入增长。
- C端市场
目前C端市场仍缺乏代表性应用,大部分产品处于功能性尝试阶段。然而,随着技术的进步和硬件的升级,C端市场有望迎来颠覆性的应用场景,推动用户规模的快速增长。企业通过生态协同和出海拓展,将进一步挖掘C端市场的潜力。
图表:AIGC app 行业用户规模高速增长
1.3 智能体在B端与C端的应用
AI智能体被誉为AI时代的重要突破,具有规划、记忆、工具、行动和交互的多重能力。智能体能够通过自然语言处理为用户提供服务,适应多种应用场景,并与其他智能体进行协同合作。它不仅是信息展示的平台,更能够自主完成复杂任务,为未来的商业化提供巨大潜力。
图表:AI智能体具备规划、记忆、工具、行动和交互能力
- B端应用场景
在B端,AI智能体作为企业的数字员工或智能助手,能够帮助企业实现自动化运营和生产优化。它在零售、旅游、人力资源等行业表现突出,通过自动化处理和智能决策大幅提高效率。
- C端应用场景
在C端,AI智能体主要被用于生活助手、教育助手和电商助手等角色,帮助提升个性化服务体验。随着智能体技术的进步,用户将能够享受更自然的交互体验,AI智能体的多模态能力也使其在多个应用场景中具有更强的竞争力。
2、大模型与垂直行业结合
大模型技术在多个垂直行业中的应用正在迅速扩展。根据麦肯锡的报告,AI生成式技术对先进制造、电子和半导体、消费品、能源、银行业的效益最大。具体来看,办公、零售、客服、金融、教育等领域将在未来几年内率先实现大模型的场景化应用,并带来智能化转型。
图表:大模型垂类领域潜力分析
2.1 金融行业:AI赋能多模态数据处理,提升业务效率
根据艾瑞数据,2023年,各金融机构科技投入规模超过3700亿元,且持续逐年上涨。预计到2027年预计将超过5800亿元,2023-27年复合增长率12%。
图表:金融机构科技投入中,新前沿技术应用投入占比持续提升
-
智能核保承保
AI通过分析客户数据,帮助保险公司优化核保流程,降低成本并扩大客户群体。
-
智能投顾
AI根据市场数据和客户需求提供个性化投资建议,提升客户收益,优化决策。
-
智能营销
AI分析客户全生命周期数据,实现定制化服务,提升客户满意度和转化率。
图表:AI 金融应用场景案例
2.2 营销行业:AI驱动精准化营销,增强用户体验
根据艾瑞于2023年的调研,接近50%的广告主已经实现营销数字化。根据QuestMobile估算2024年中国互联网广告市场规模为7880亿元,假设AIGC营销渗透场景达到20-50%,则潜在市场规模约为1600亿-4000亿元。
-
内容及创意生成
AI自动生成广告内容,降低生产门槛,提升创意质量。
-
广告投放优化
AI分析用户行为数据,实现精准广告投放,提升点击率和转化率。
-
数据及策略优化
通过整合线上线下数据,AI优化广告策略,提高营销效率。
图表:AIGC 在营销领域的主要应用场景
2.3 文娱行业:AIGC辅助创作,内容产业智能化升级
根据易观分析数据,2023年中国数字内容媒体市场将达1.21万亿元,增速重回20%+ 通道。
-
内容生成与创意辅助
AI生成创意内容,帮助影视、文学等领域创作者提高创作效率。
-
数字内容制作
AI自动生成角色设计和场景渲染,加速影视和游戏的制作流程。
-
个性化娱乐体验
AI根据用户偏好推荐个性化内容,提升用户的沉浸式体验。
图表:AIGC 应用覆盖文娱传媒全领域、内容生产消费全流程
2.4 政务领域:AI助力政务智能化,提升公共服务质量
IDC 数据显示,2022年政务云市场规模约500亿元,同比增速17%,预计2027年将突破千亿元,对应2022-27年复合增速16%。2023年人工智能在政务领域的应用渗透率仅次于互联网和金融。
图表:政务云市场规模及人工智能应用渗透率
-
智能化办公
AI自动撰写报告、生成会议纪要,提升办公效率。
-
智能政务服务
AI问答系统优化政策咨询和业务办理流程,提高服务质量。
-
城市治理
AI实时监控城市运行数据,优化应急响应和城市管理。
图表:生成式 AI 赋能一网通办智能化、便捷化
2.5 制造行业:AI推动制造业数字化升级
工信部数据显示,中国290座AI改造的智能化示范工厂研发周期缩短约21%, 生产效率提升约35%。德勤研究数据显示,AI在制造业的应用场景规模到2025年将超过140亿元,2023-25年复合增速达59%。
图表:AI在中国制造业应用场景规模及智能示范工厂提升效率
-
智能生产
AI优化生产设备运行,降低故障率,提升生产效率。
-
智能物流
AI优化仓储布局和无人运输,提升物流效率,降低成本。
-
智能供应链
AI实现供应链全程可视化,优化库存管理和生产计划。
大模型将通过行业应用加速商业化落地。在金融、教育、文娱、医疗等多个领域,大模型的场景化应用能够提高生产效率并降低运营成本。未来,办公、零售、客服等行业将率先迎来大模型的场景落地,中长期内,制造、政务等行业也将逐步实现智能化转型。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。