一、AI Agent:重新定义人机协作的「智能体」
简单来说,AI Agent 是基于大模型构建的自主智能体,能像人类一样「感知环境→规划决策→执行反馈」。
核心特点:
- 自主性:无需人工干预,自动分解任务、调用工具(如订机票时自动查询航班、比价)。
- 智能性:依托大模型理解自然语言,处理对话、写作、翻译等复杂语言任务。
- 可扩展性:通过调用 API、插件或数据库扩展能力,例如用向量数据库检索实时数据。
- 多模态(部分场景):支持文本、图像、语音交互,如分析图片内容并生成描述。
工作逻辑:用户输入指令→Agent 解析目标→规划步骤(如拆分子任务)→调用工具执行→反馈结果并优化策略。
二、5 种主流 AI Agent 模式:从单点优化到团队协作
以下 5 种模式覆盖了从简单任务到复杂场景的全链条应用,每张图都暗藏核心逻辑,建议收藏对比!
2.1 反射模式:自我迭代的「智能评论家」
核心逻辑:通过「生成→反思→迭代」闭环提升输出质量,类似「运动员 + 裁判员」双重角色。
- 流程:用户提问→LLM 生成初始回答→反思模块评估漏洞→反馈至生成模块优化→循环直至达标。
- 场景:需要多次修正的场景,如创意写作(反复润色文案)、复杂问题解答(学术论文推导)。
- 优势:无需外部工具,纯内部优化即可提升逻辑性和准确性。
案例:写一篇营销文案时,Agent 先生成初稿,再自我检查「卖点是否突出」「逻辑是否连贯」,反复调整直至符合要求。
2.2 工具使用模式:突破能力边界的「跨界能手」
核心逻辑:LLM 调用外部工具 / API 扩展功能,解决自身无法直接完成的任务(如实时数据查询、代码执行)。
- 流程:用户提问→LLM 判断需工具辅助→调用向量数据库(检索数据)或 API(如天气、股票接口)→整合结果生成回答。
- 场景:需要实时信息或专业计算的场景,如金融分析(获取最新股价)、数据分析(调用 Python 脚本处理表格)。
- 优势:打破大模型「知识截止」限制,实现动态数据交互。
案例:用户询问「今日北京到上海航班最低价」,Agent 调用机票预订 API 获取实时价格,对比后给出最优方案。
2.3 ReAct 模式:边思考边行动的「实干派」
核心逻辑:「推理(Reason)+ 行动(Act)」循环,模拟人类「想一步做一步」的问题解决思路。
- 流程:用户提问→LLM 分析并制定行动计划(如「先查库存,再确认配送时间」)→调用工具执行→根据结果调整策略→生成回答。
- 场景:动态变化或多步骤任务,如机器人控制(避障路径规划)、客服工单处理(按流程查询订单状态)。
- 优势:实时响应环境变化,避免「空想」导致的策略偏差。
案例:工厂机器人接到「搬运零件」指令,先推理路径是否有障碍物→调用传感器检测→调整路线→执行搬运,全程动态优化。
2.4 规划模式:统筹全局的「项目管理者」
核心逻辑:将复杂任务拆解为可执行的子任务链,通过「规划器 + 执行者」分工协作完成目标。
- 流程:用户提出复杂需求(如「策划一场线上发布会」)→规划器拆分子任务(设计方案、邀请嘉宾、技术调试等)→ReAct Agent 逐个执行→汇总结果。
- 场景:多阶段、长周期任务,如项目管理(敏捷开发流程)、旅行规划(行程设计 + 资源预订)。
- 优势:结构化处理任务,避免遗漏关键环节,提升执行效率。
案例:开发一款 APP 时,规划器先制定「需求分析→UI 设计→后端开发→测试上线」流程,各阶段由不同 Agent 执行,全程跟踪进度。
2.5 多智能体模式:模拟真实团队的「协作网络」
核心逻辑:多个 Agent 分工协作,类似「虚拟公司」,每个角色负责特定领域,通过通信共享信息。
架构:
- PM Agent(项目经理):统筹任务分配,如将「开发新功能」拆解为需求分析、代码编写、测试等。
- 技术负责人 Agent:制定技术方案,分配给开发 Agent。
- DevOps Agent:负责部署和运维。
场景:跨领域复杂任务,如软件开发(多团队协作)、医疗会诊(内科 + 影像 + 药剂科联动)。
优势:专业化分工提升效率,解决单一 Agent 能力局限问题。
案例:电商大促活动中,PM Agent 协调运营 Agent(制定促销策略)、技术 Agent(优化服务器)、客服 Agent(培训话术),共同保障活动顺利进行。
三、一张表看透 5 种模式的核心差异
模式 | 核心思想 | 典型场景 | 关键工具 / 角色 |
---|---|---|---|
反射模式 | 自我迭代优化输出 | 内容创作、学术推理 | 生成模块 + 反思模块 |
工具使用模式 | 整合外部工具扩展能力 | 实时数据查询、API 调用 | 向量数据库、第三方 API |
ReAct 模式 | 推理与行动交替的动态循环 | 机器人控制、客服工单处理 | 推理型 LLM + 生成型 LLM |
规划模式 | 任务分解与动态调整 | 项目管理、多步骤问题解决 | 规划器 + ReAct Agent |
多智能体模式 | 多角色协作与信息共享 | 跨领域开发、复杂项目统筹 | PM Agent + 技术 Agent + 执行 Agent |
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。