车道线检测端到端方法学习

Ultra Fast Lane Detection和polyLaneNet及LaneNet方法

本文参考链接:
链接:
https://www.jianshu.com/p/279daa50a014

参考文章:
1、<<Ultra Fast Structure-aware Deep Lane Detection>>
2、<<PolyLaneNet:Lane Estimation via Deep Polynomial Regression>>

相应代码:
https://github.com/cfzd/Ultra-Fast-Lane-Detection
https://github.com/lucastabelini/PolyLaneNet
数据集:
在这里插入图片描述
1.Ultra Fast Lane Detection
将pixel分割转换为grid分类的问题。对HW的图像划分成h(w+1)的网格,分割时需要处理HW个点的进行分类,类别数目(C+1);现在只需要处理hC个点的分类,类别数目(w+1)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
此外,在训练时,加入分割辅助支路,因此还有分割的交叉熵损失。
2、polyLaneNet
利用多项式进行道路建模(图中所示多项式系数a,每一条车道线有4个系数,即为3阶多项式)。
s为纵向方向车道线距图像底部的最小距离,h为纵向方向车道线距图像底部的最大距离(所有车道线共享一个h),c为车道线的置信度。
在这里插入图片描述
多项式损失的计算:取y坐标,通过多项式计算x坐标,计算MSE损失。如果某个点损失小于预设阈值,令损失为0,为了减少对于已经预测准确的点的关注。

threshold = nn.Threshold(threshold**2, 0.)
poly_loss = mse(pred_xs[valid_xs], target_xs[valid_xs]) / valid_lanes_idx.sum()
poly_loss = threshold((pred_xs[valid_xs] - target_xs[valid_xs])**2).sum() / (valid_lanes_idx.sum() * valid_xs.sum())
在这里插入图片描述
3.LaneNet方法
(1)参考网址:
https://www.jianshu.com/p/c3f5ea4248b0
四、传统车道线检测方法:
OpenCV在车道线查找中的作用。
参考网址:
https://www.jianshu.com/p/9675d823d41a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值