kitti数据集中calib.txt文件各参数含义

本文详细解析了Kitti数据集calib.txt文件中各参数的意义,包括相机内参矩阵、外参矩阵及基线长度计算,提供了一个清晰的理解路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       

         在学习视觉SLAM14讲ch13代码部分使用到Kitti数据集,在此对数据集中calib.txt文件各参数含义进行解释

        Kitta/data_odometry_gray/dataset/sequences/00/calib.txt文件


       

其中:

        P0代表0号相机 左边灰度相机
        P1代表1号相机 右边灰度相机
        P2代表2号相机 左边彩色相机
        P3代表3号相机 右边彩色相机

接下来解释Pi中12个数字的含义

        Pi矩阵当世界坐标系和参考相机0的坐标系重合时(实际上世界坐标系和 Cam0 坐标系不重合)的投影矩阵,可以理解为相机 i 的内参矩阵 * 相机0相对于相机i的外参矩阵

P_{i}=K_{i}T_{i0}=K_{i}[R_{i0}\, \, \, t\,_{i0}] 

        对于相机1、2、3而言,相机0相对于他们的外参数旋转矩阵为单位矩阵 I ,即:

 R_{i0}=\begin{bmatrix} 1 & 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}

         即有:

P_{i}=K_{i}T_{i0}=[K_{i}\, \, \, K_{i}t\,_{i0}]

        根据文件calib.txt文件可得

        相机0,1,2,3的内参矩阵为:

K_{0}=K_{1}=K_{2}=K_{3}

=\begin{bmatrix} 7.188560000000e+02& 0& 6.071928000000e+02\\ 0& 7.188560000000e+02& 1.852157000000e+02\\ 0& 0& 1 \end{bmatrix}

         下面计算相机0和相机1的外参中的平移向量 t ,由上式可得:

        K_{0}t\,_{w0}=\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix},K_{1}t\,_{10}=\begin{bmatrix} -3.861448000000e+02\\ 0\\ 0 \end{bmatrix}

        即相机0和相机1的外参中的平移向量 t 为:

t\,_{w0}=\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix},t\,_{10}=\begin{bmatrix} -0.537166\\ 0\\ 0 \end{bmatrix}

        即相机0和相机1的基线 b 的长度为:

b=\begin{Vmatrix} t\,_{10} \end{Vmatrix}_{2}=0.537166(m)

        由最上面第二张图片可得,Cam0(gray)和Cam1(gray)的基线长度 b 为0.54米,计算结果准确。

t\,_{20}=\begin{bmatrix} 0.059939\\ -0.001131\\ 0.003780 \end{bmatrix},t\,_{30}=\begin{bmatrix} -0.471829\\ 0.002494\\ 0.003112 \end{bmatrix}

参考:

        【KITTI数据集Odometry序列00-10标定文件中的参数关系解读】
 

          kitti数据集的标定文件

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值