informer模型架构解释(含举例说明)

informer模型架构解释

在这里插入图片描述

图片引用自论文Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

这张图片展示了一个Transformer模型的架构,这是在自然语言处理(NLP)和其他序列任务中广泛使用的一种模型。图片显示了一个典型的编码器-解码器结构,这种结构常用于序列到序列的模型,比如机器翻译。以下是详细解释及举例:

详细解释

1. 输入(左侧)

输入序列表示为 X_feed_cn。这可以是一个标记序列,例如一句话中的单词或字符。例如,在机器翻译任务中,输入可以是一个英文句子 “I love learning AI”。

2. 编码器(Encoder)

  • 编码器部分接收输入序列 X_feed_cn 并通过多个堆叠的层进行处理。这些层包括多头注意力机制(Multi-head Attention)、ProbSparse自注意力机制(ProbSparse Self-attention)等。
  • 编码器的每一层都以依赖金字塔(Dependency pyramid)的形式逐步缩小输入序列的表示。
  • 最终生成的编码器输出是一个特征图(Concatenated Feature Map)&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值