图示解释
这幅图展示了时间延迟聚合(Time Delay Aggregation, TDA)机制的细节,该机制用于捕捉时间序列数据中的周期性和趋势性特征。以下是图中各部分的详细解释:
1. 时间延迟 (Time Delay)
- Time Delay:对原始时间序列进行多种时间延迟操作,得到不同的时延版本。每个时延版本表示在不同时间滞后的数据序列。
- Roll(τ₁), Roll(τ₂), …, Roll(τₖ):这些表示对原始时间序列按不同的时间滞后τ进行滚动操作,得到多个时延序列。τ₁, τ₂, …, τₖ表示不同的时间滞后值。
2. 时间延迟后的序列 (Rolled Sequences)
- 滚动后的序列:对原始时间序列进行滚动操作后,得到多个长度为L的时延序列。每个序列表示在不同时间滞后的数据状态。
- 每个时延序列:这些序列保留了原始数据的形状,但相对于原始数据进行了一定的时间位移。
3. 相关性计算 (Correlation Calculation)
- R(τ₁), R(τ₂), …, R(τₖ):这些表示对每个时延序列计算的相关性。这一步通过与某个参考序列(可能是原始序列或其他处理过的序列)进行点乘计算得到相关性。
- 点乘操作(×):每个时延序列与参考序列进行点乘,计算出相关性值。
4. 软最大化 (SoftMax)
- SoftMax:对计算出的相关性值进行SoftMax操作,得到各个时延序列的权重。这些权重表示每个时延序列在最终聚合结果中的重要性。
- 相关性融合 (Fusion):对所有时延序列的相关性值进行加权融合,得到最终的聚合结果。
具体步骤
- 输入时间序列:原始时间序列数据输入到TDA模块。
- 时间延迟操作:对输入时间序列进行多种时间滞后操作,得到多个时延版本。
- 相关性计算:对每个时延序列与参考序列进行相关性计算,得到各个时延序列的相关性值。
- SoftMax操作:对所有相关性值进行SoftMax操作,计算出各个时延序列的权重。
- 加权融合:对所有时延序列的相关性值进行加权融合,得到最终的时间序列聚合结果。