时间延迟聚合(Time Delay Aggregation, TDA)机制

在这里插入图片描述

图示解释

这幅图展示了时间延迟聚合(Time Delay Aggregation, TDA)机制的细节,该机制用于捕捉时间序列数据中的周期性和趋势性特征。以下是图中各部分的详细解释:

1. 时间延迟 (Time Delay)
  • Time Delay:对原始时间序列进行多种时间延迟操作,得到不同的时延版本。每个时延版本表示在不同时间滞后的数据序列。
  • Roll(τ₁), Roll(τ₂), …, Roll(τₖ):这些表示对原始时间序列按不同的时间滞后τ进行滚动操作,得到多个时延序列。τ₁, τ₂, …, τₖ表示不同的时间滞后值。
2. 时间延迟后的序列 (Rolled Sequences)
  • 滚动后的序列:对原始时间序列进行滚动操作后,得到多个长度为L的时延序列。每个序列表示在不同时间滞后的数据状态。
  • 每个时延序列:这些序列保留了原始数据的形状,但相对于原始数据进行了一定的时间位移。
3. 相关性计算 (Correlation Calculation)
  • R(τ₁), R(τ₂), …, R(τₖ):这些表示对每个时延序列计算的相关性。这一步通过与某个参考序列(可能是原始序列或其他处理过的序列)进行点乘计算得到相关性。
  • 点乘操作(×):每个时延序列与参考序列进行点乘,计算出相关性值。
4. 软最大化 (SoftMax)
  • SoftMax:对计算出的相关性值进行SoftMax操作,得到各个时延序列的权重。这些权重表示每个时延序列在最终聚合结果中的重要性。
  • 相关性融合 (Fusion):对所有时延序列的相关性值进行加权融合,得到最终的聚合结果。

具体步骤

  1. 输入时间序列:原始时间序列数据输入到TDA模块。
  2. 时间延迟操作:对输入时间序列进行多种时间滞后操作,得到多个时延版本。
  3. 相关性计算:对每个时延序列与参考序列进行相关性计算,得到各个时延序列的相关性值。
  4. SoftMax操作:对所有相关性值进行SoftMax操作,计算出各个时延序列的权重。
  5. 加权融合:对所有时延序列的相关性值进行加权融合,得到最终的时间序列聚合结果。

举例说明

假设我们有一个简单的时间序列数据,记录了过去10天的每日温度:

[ 30 , 32 , 31 , 29 , 30 , 33 , 34 , 35 , 36 , 38 ] [30, 32, 31, 29, 30, 33, 34, 35, 36, 38] [30,32,31,29,30,33,34,35,36,38]

步骤1:时间延迟操作
  • Roll(τ₁):假设τ₁为1天,则第一个时延序列为 [ 38 , 30 , 32 , 31 , 29 , 30 , 33 , 34 , 35 , 36 ] [38, 30, 32, 31, 29, 30, 33, 34, 35, 36] [38,30,32,31,29,30,33,34,35,36]
  • Roll(τ₂):假设τ₂为2天,则第二个时延序列为 [ 36 , 38 , 30 , 32 , 31 , 29 , 30 , 33 , 34 , 35 ] [36, 38, 30, 32, 31, 29, 30, 33, 34, 35] [36,38,30,32,31,29,30,33,34,35]
步骤2:相关性计算
  • 对每个时延序列与参考序列进行相关性计算,假设参考序列为原始序列。
步骤3:SoftMax操作
  • 对计算出的相关性值进行SoftMax操作,得到每个时延序列的权重。
步骤4:加权融合
  • 使用计算出的权重对所有时延序列的相关性值进行加权融合,得到最终的聚合结果。

总结

通过时间延迟聚合机制,可以有效地捕捉时间序列中的周期性和趋势性特征。这种方法利用多种时间滞后操作和相关性计算,结合SoftMax加权融合,能够生成更加准确和稳定的时间序列预测结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值