深入理解LoRA:让大模型更聪明地学习

深入理解LoRA:让大模型更聪明地学习

在人工智能领域,大型预训练模型正变得日益普遍,从NLP(自然语言处理)到CV(计算机视觉),它们的应用几乎无所不包。然而,随着这些模型规模的增长,如何高效地对它们进行微调以适应特定任务成了一个挑战。传统的微调方法,即调整模型的所有参数,虽然简单直接,但代价高昂。这就是LoRA(Low-Rank Adaptation,低秩适应)技术发挥作用的地方。它是一种高效的参数适应方法,用于在保持预训练模型参数大部分不变的前提下,通过引入少量可训练参数来适应特定任务。LoRA 的设计目标是允许大型预训练模型(如GPT-3、BERT等)在下游任务中以较低的资源消耗实现高效的微调和定制。

LoRA简介

LoRA技术旨在通过引入少量可训练参数来适应特定任务,同时保持预训练模型的大部分参数不变。这通过在模型的关键部分插入低秩矩阵来实现,这些矩阵在下游任务中进行训练,而其他参数则保持固定。这种方法既节约了计算资源,又允许模型快速适应新任务,同时避免了因过多自由参数而导致的过拟合问题。

LoRA的优势

LoRA(Low-Rank Adaptation)技术相对于其他模型微调和适应方法,提供了一些独特的优点:

  1. 高效的参数使用:LoRA通过引入低秩矩阵作为模型的可训练参数,显著减少了必须训练的参数数量。这种方法相比全参数微调(即微调模型的所有参数)更为高效,因为它只调整一个参数子集而保持其他参数不变。

    </
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石去皿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值