基于准滑动模态的滑模控制实例(采用饱和函数sat(s)代替符号函数)

本文详细介绍了滑模控制理论在系统数学模型中的应用,包括设计滑模面、控制器u的计算方法,以及稳定性证明。通过SIMULINK仿真展示并比较了原始模型的抖振问题,提出使用饱和函数替代符号函数来改善控制效果。
摘要由CSDN通过智能技术生成

一、前言

大家可以先读这篇博客,我是在这个博客的基础上做的实例。
通俗理解滑模变结构控制

二、系统数学模型

{ x ˙ 1 = x 2 x ˙ 2 = x 3 x ˙ 3 = x 1 + x 2 x 3 + u \left\{ \begin{array}{l} {{\dot x}_1} = {x_2}\\ {{\dot x}_2} = {x_3}\\ {{\dot x}_3} = {x_1} + {x_2}{x_3} + u \end{array} \right. x˙1=x2x˙2=x3x˙3=x1+x2x3+u

三、控制器设计

Step1.设计滑模面

s = x 3 + 2 x 2 + x 1 s = {x_3} + 2{x_2} + {x_1} s=x3+2x2+x1
这里不做解释可以参照前言中的推荐文章。

Step2.设计控制器u

对切换函数s求导:
s ˙ = x ˙ 3 + 2 x ˙ 2 + x ˙ 1 = x 1 + x 2 + 2 x 3 + x 2 x 3 + u \dot s = {\dot x_3} + 2{\dot x_2} + {\dot x_1}{\rm{ = }}{x_1} + {x_2} + 2{x_3} + {x_2}{x_3} + u s˙=x˙3+2x˙2+x˙1=x1+x2+2x3+x2x3+u
取指数趋近律: s ˙ = − s g n ( s ) − s \dot s = - {\mathop{\rm sgn}} \left( s \right) - s s˙=sgn(s)s得控制器u:
u = − s g n ( s ) − s − x 1 − x 2 − 2 x 3 − x 2 x 3 u = - {\mathop{\rm sgn}} \left( s \right) - s - {x_1} - {x_2} - 2{x_3} - {x_2}{x_3} u=sgn(s)sx1x22x3x2x3

Step3.稳定性证明

取李雅普诺夫函数 V = 1 2 s 2 V = \frac{1}{2}{s^2} V=21s2
得: V ˙ = s s ˙ = − ∣ s ∣ − s 2 \dot V = s\dot s = - \left| s \right| - {s^2} V˙=ss˙=ss2
李亚普诺夫函数的导数是负定的,因此系统渐进稳定,即s会趋于0,又因为 s = x 3 + 2 x 2 + x 1 s = {x_3} + 2{x_2} + {x_1} s=x3+2x2+x1,因此 x 1 , x 2 , x 3 {x_1},{x_2},{x_3} x1,x2,x3都会趋近于0。

四、仿真

1.SIMULINK模型搭建

在这里插入图片描述

2.仿真结果

在这里插入图片描述
从图中可以看出明显的抖振,为了防止抖振,可以采用饱和函数sat(s)代替控制器中的符号函数sgn(s),即:
u = − s a t ( s ) − s − x 1 − x 2 − 2 x 3 − x 2 x 3 u = - {\rm{s}}at\left( s \right) - s - {x_1} - {x_2} - 2{x_3} - {x_2}{x_3} u=sat(s)sx1x22x3x2x3
在这里插入图片描述
Δ \Delta Δ=0.05。

新模型搭建
框图仿真结果在这里插入图片描述
可以看出采用饱和函数代替符号函数,效果还是挺明显的。

注:本人也是小白,发文也是想着对自己学的东西做总结,不喜勿喷。本文仅供参考,个人能力有限,难免会有些错误,希望大家批评指正。

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值