2023年MathorCup大数据竞赛A题基于计算机视觉的坑洼道路检测和识别 思路论文代码

该博客探讨了2023年MathorCup大数据竞赛A题,即基于计算机视觉的坑洼道路检测和识别。文章指出,深度学习技术在解决坑洼图像复杂特征上的优势,通过提取图像的轮廓、纹理和形态等特征提高分类性能。比赛要求参赛者建立高效、准确的模型识别道路是否坑洼,并对模型进行训练和评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

国外相关论文,持续更新

自主道路裂缝和坑洼检测

随着自动驾驶汽车和自主机器人的出现,势在必行 检测裂缝和坑洼等道路损伤并执行必要的操作 规避操作,以确保机上乘客或设备的流畅旅程。 我们提出了一种完全自主的实时道路裂缝和坑洼检测 可以部署在任何基于 GPU 的传统处理板上的算法 与关联的摄像机。该方法基于深度神经网络 使用纹理和空间检测裂缝和坑洼的建筑 特征。我们还提出了确保实时性的预处理方法 性能。该方法的新颖之处在于使用基于纹理的功能 以区分裂缝表面和健全的道路。该方法执行 在较大的视点变化、背景噪点、阴影和遮挡方面都很好。这 该系统的有效性显示在标准道路裂缝数据集上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值