1. 引言
随着城市化进程的加快,生活垃圾的数量不断增加,如何有效地进行垃圾分类和管理,成为了城市管理者面临的重要挑战。深度学习,尤其是卷积神经网络(CNN)在计算机视觉中的应用,为垃圾检测与分类提供了新的解决方案。本文将详细介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOv10)的生活垃圾检测与分类系统,包括数据集的构建、模型的训练与评估、以及UI界面的设计。
目录
2. 系统概述
本系统主要包括以下几个部分:
- 数据集的构建与预处理
- YOLO模型的选择与训练
- 系统的前端UI设计
- 实时垃圾检测与分类
3. 数据集构建与预处理
3.1 数据集选择
为了训练一个有效的垃圾检测与分类系统,需要选择一个合适的数据集。常用的垃圾分类数据集有:
- TA