1. 引言
随着人工智能技术的迅速发展,深度学习在计算机视觉领域取得了显著的进展,尤其在目标检测和图像分类方面。传统的野生菌菇识别依赖于人工辨别,这不仅费时且容易出现误判。为了提高效率和准确性,基于深度学习的自动化野生菌菇检测、识别与分类系统应运而生。
野生菌菇在自然界中种类繁多,其中不乏有毒的品种,误食有毒菌菇可能导致严重的健康风险。因此,开发一种能够自动检测和分类野生菌菇的系统具有重要的实际意义。本项目基于YOLOv8(You Only Look Once)模型和PyQt5开发了一个完整的菌菇识别系统,并通过图形用户界面(UI)让用户更加直观、便捷地使用该系统。
目录
2. 目标与任务
本项目旨在构建一个基于YOLOv8的野生菌菇检测与分类系统,具备以下功能:
- 野生菌菇目标检测:通过YOLOv8模型,检测图片中的菌菇,并标注出其位置。
- 野生菌菇分类:将检测到的菌菇分类,识别其种类。
- 图形用户界面(UI)