引言
在现代电子制造业中,PCB(Printed Circuit Board,印刷电路板)作为所有电子设备的核心基础,其生产质量直接影响到电子产品的性能与可靠性。随着工业自动化和人工智能技术的发展,传统的人工检查PCB板缺陷的方式逐渐被基于深度学习的自动化检测系统所替代。这种系统不仅大大提高了检测效率和准确性,还能够减少人工操作的误差,降低生产成本。
本博客将详细介绍如何基于深度学习,结合YOLO(You Only Look Once)系列模型(v8/v7/v6/v5),实现PCB板缺陷检测系统的搭建。我们将涵盖整个系统的开发过程,包括界面设计、数据准备、模型训练、测试和优化等内容,并给出完整的代码示例。
目录
1. PCB缺陷检测的挑战与需求
1.1 PCB缺陷类型
PCB缺陷可能包括以下几种类型:
- 开路:电路中存在断裂或连接不良的情况。
- 短路:电路中两个不同电路间存在不必要的连接。
- 虚焊