1. 引言
随着工业自动化和智能制造的进步,越来越多的生产线采用机器视觉系统来提高生产效率和产品质量。在传统的生产过程中,缺陷产品的检测往往依赖于人工检查,这不仅增加了人力成本,还存在着人为误差和检测效率低的问题。随着深度学习技术的发展,基于计算机视觉的自动检测技术逐渐成为解决这一问题的有效手段。
YOLO(You Only Look Once)是一种流行的实时目标检测算法,其以检测速度快、精度高而被广泛应用于多种场景。YOLO系列模型,包括YOLOv5、YOLOv8和YOLOv10,逐渐成为工业缺陷检测中的核心技术,能够实时、精确地识别生产线上的缺陷产品。
本文将介绍如何基于YOLOv5、YOLOv8和YOLOv10模型实现生产线上的缺陷产品自动检测,涵盖从数据集准备、模型训练到实时检测与UI展示的全过程。最终,我们将实现一个自动化生产线缺陷检测系统,可以有效检测生产过程中的各种缺陷,帮助企业提高生产效率和产品质量。
2. YOLO系列模型概述
2.1 YOLOv5
YOLOv5是由Ultralytics团队开发的一款基于PyTorch的目标检测模型。与之前的YOLO版本(如YOLOv4、YOLOv3)相比,YOLOv5具有更高的速度和精度,支持实时检测任务。它采用CSPDa