引言
随着制造业的发展,布匹质量检测在纺织行业中变得尤为重要。传统的布匹质量检测主要依靠人工检测,但人工检测不仅效率低,而且容易受到疲劳和人为因素的影响,导致漏检和误检的现象。随着深度学习技术的不断进步,基于深度学习的图像处理技术已在多个领域取得了显著成效,其中包括布匹缺陷检测。
本项目旨在构建一个基于YOLOv10深度学习模型的布匹缺陷检测系统。该系统能够自动检测布匹上的缺陷,如污渍、破损、异物等,并为其分类。为了方便使用,本项目还将使用PySide6框架创建一个用户友好的图形界面,用户可以通过该界面上传布匹图像并查看缺陷检测结果。
本文将详细介绍如何搭建这个系统,涉及的数据集准备、YOLOv10模型训练、PySide6界面设计等内容,并提供完整的代码实现,帮助用户快速部署和使用该系统。
1. 项目背景与目标
1.1 背景
布匹质量检测是纺织品生产过程中至关重要的一环。随着生产自动化水平的提高,人工检查布匹质量的效率和准确性已无法满足需求。为了解决这个问题,深度学习和计算机视觉技术开始在布匹缺陷检测中得到广泛应用。YOLO(You Only Look Once)是当前最流行的目标检测算法之一,尤其适用于实时检测任务。YOLOv10是YOLO系列的最新版本,它具有更高的准确率和更快的推理速度ÿ