1. 引言
在智能交通系统(ITS,Intelligent Traffic System)中,交通信号灯检测是一个关键环节。准确识别交通信号灯的状态(红灯、绿灯、黄灯、熄灭)对于自动驾驶、交通流量管理和道路安全至关重要。通过深度学习技术,可以在复杂的交通环境中,快速准确地检测和分类信号灯的状态,从而为车辆和行人提供实时决策支持。
近年来,YOLO(You Only Look Once)作为一种高效的目标检测算法,在交通信号灯检测中表现出色。YOLOv5是YOLO系列中最为成熟和易于部署的版本,具有较高的检测精度和实时性,已被广泛应用于自动驾驶和智能交通系统中。
本项目基于YOLOv5,利用开源数据集,训练一个交通信号灯检测模型,支持对红灯、绿灯、黄灯和熄灭灯状态的实时检测和分类。同时,本文搭建了一个基于PyQt5的UI界面,展示检测结果,支持实时摄像头视频流的输入和输出。
2. YOLOv5简介
2.1 YOLO(You Only Look Once)算法原理
YOLO