基于YOLOv5的交通信号灯检测:red light, green light, yellow light, off light

1. 引言

在智能交通系统(ITS,Intelligent Traffic System)中,交通信号灯检测是一个关键环节。准确识别交通信号灯的状态(红灯、绿灯、黄灯、熄灭)对于自动驾驶、交通流量管理和道路安全至关重要。通过深度学习技术,可以在复杂的交通环境中,快速准确地检测和分类信号灯的状态,从而为车辆和行人提供实时决策支持。

近年来,YOLO(You Only Look Once)作为一种高效的目标检测算法,在交通信号灯检测中表现出色。YOLOv5是YOLO系列中最为成熟和易于部署的版本,具有较高的检测精度和实时性,已被广泛应用于自动驾驶和智能交通系统中。

本项目基于YOLOv5,利用开源数据集,训练一个交通信号灯检测模型,支持对红灯、绿灯、黄灯和熄灭灯状态的实时检测和分类。同时,本文搭建了一个基于PyQt5的UI界面,展示检测结果,支持实时摄像头视频流的输入和输出。


2. YOLOv5简介

2.1 YOLO(You Only Look Once)算法原理

YOLO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值