1. 引言
在现代医疗手术中,手术器械的种类繁多,使用场景复杂。在手术过程中,医生和护士需要快速识别和分类手术器械,才能确保手术过程的顺畅和安全。然而,当前手术器械管理中存在以下问题:
- 人工识别难度大:
手术室环境复杂,医生需要专注于手术操作,无法快速判断器械的完整性和数量。 - 人工管理效率低:
手术器械数量繁多,人工清点和管理耗时长,且易出错。 - 术中操作安全隐患:
器械在术中可能因遗漏或误取导致手术延误或并发症。
为了解决这些问题,本文提出了一种基于**YOLOv5(You Only Look Once)**的手术器械目标检测系统,旨在通过深度学习自动检测手术器械,辅助医生进行器械管理和手术操作。
本文将详细介绍YOLOv5的架构和原理、手术器械数据集的构建与预处理、模型训练与优化、UI界面的设计与实现,并提供完整的Python代码。