一、引言
手术过程中的器械清点是确保患者安全的重要步骤。传统的器械清点依赖人工检查,容易受到疲劳、疏忽等因素的影响,存在较大的误差风险。随着人工智能技术的发展,基于深度学习的自动化器械清点系统应运而生。该系统能够利用计算机视觉和深度学习技术,在手术过程中自动检测和识别器械,实现精准清点。
本篇博客将介绍如何使用YOLOv8模型结合UI界面开发一个智能化的手术器械清点系统。该系统能够实时检测手术器械,并通过UI界面展示清点结果,从而提高清点效率,减少人工错误。
二、系统架构与技术选型
2.1 系统架构
本手术器械清点系统的整体架构分为以下几个模块:
- 数据采集与预处理:使用摄像头实时拍摄手术台上的器械,通过图像处理将图像转化为YOLOv8模型可以接受的格式。
- YOLOv8目标检测:使用YOLOv8进行器械目标检测,准确识别出手术器械的位置。
- 器械清点与统计:对检测到的器械进行清点,统计已清点的器械数量,并与预设的清单进行对比,确认清点是否完成。
- UI界面展示:基于PyQt6开发用户界面,展示检测结果、器械数量及相关信息。