一、引言
障碍物检测作为自动驾驶、无人机导航、工业自动化等领域中的关键技术之一,正在获得越来越多的关注。在这些应用场景中,实时准确地检测和识别障碍物,是确保系统安全性和稳定性的重要环节。随着深度学习技术的飞速发展,基于深度学习的障碍物检测已经成为目前最主流和高效的技术手段。
YOLO(You Only Look Once)作为一种快速且高效的目标检测模型,因其能够在单次前向传播中完成目标的定位与分类,已经在众多实际应用中得到了广泛的使用。尤其是在障碍物检测领域,YOLOv5、YOLOv6、YOLOv7和YOLOv8等版本都能提供高效的目标检测和精准的分类结果。
本文将详细介绍如何利用YOLO系列模型(包括YOLOv5、YOLOv6、YOLOv7、YOLOv8)构建一个基于深度学习的障碍物检测系统。我们将依次展示数据集准备、模型训练、UI界面设计、实时障碍物检测及展示等步骤,并给出详细的代码实现。
二、项目概述
本项目旨在实现一个基于YOLO系列模型的障碍物检测系统。主要功能包括:
- 数据集准备:准备并标注包含障碍物图像的数据集。
- 模型训练:使用YOLOv5、YOLOv6、YOLOv7或YOLOv8训练障碍物检测模型。
- UI界面设计:开发一个用户友好