1. 引言
在许多工业和建筑环境中,危险区域对工作人员的安全构成了严重威胁。为了确保人员的安全,许多企业已开始使用安全装备(如安全帽、防护眼镜、安全鞋等)作为必备的安全措施。然而,人工巡检不仅效率低,且容易受人为因素影响,无法保证高效且准确地执行任务。因此,自动化的安全装备检测系统变得尤为重要。
近年来,基于深度学习的目标检测技术,尤其是YOLO(You Only Look Once)系列算法,在工业领域得到了广泛应用。YOLOv8,作为YOLO系列的最新版本,具备更高的精度与更强的实时性,已经成为实现自动化检测任务的理想选择。
本文将介绍如何使用YOLOv8模型来检测危险区域人员是否佩戴安全装备,并结合UI界面进行实时监控和操作。我们将详细讨论系统的架构、训练过程、UI设计以及实现代码,并推荐相关数据集。
2. YOLOv8概述
YOLOv8(You Only Look Once version 8)是目前YOLO系列算法中最新的版本,它继续保持了YOLO的优点——高效的实时目标检测,同时在精度和速度上做了进一步优化。YOLOv8采用了最新的网络架构,提升了对小物体的检测能力,并有效地减少了误检和漏检。
与传统的目标检测算法不同,YOLO系列