1. 引言
随着全球人口不断增长,农业生产面临着提高产量与质量的双重压力。智慧农业作为现代农业的重要发展方向,借助物联网、人工智能和计算机视觉技术,实现农田的精准管理和自动化监控,极大地提升了农作物的种植效率和管理水平。
视觉监控系统通过摄像头实时采集农田图像,对植物生长状态、病虫害、杂草、灌溉情况等目标进行自动识别和分析,是智慧农业的核心环节。目标检测技术的发展,尤其是YOLO系列算法,因其快速且准确的检测能力,已成为农田监控的理想选择。
本文将详细介绍如何构建一套基于YOLOv8与PyQt5 UI的智慧农业监控系统,实现农田实时目标检测和可视化。内容包含数据集选择、模型训练、系统搭建及代码实现,旨在帮助农业AI开发者快速搭建实用系统。
2. 智慧农业监控系统背景与需求
2.1 农业监控的关键目标
- 作物识别与生长监测
实时识别不同作物种类,监控其生长状况,评估健康状态。 - 病虫害自动检测
快速发现病虫害斑点和虫害行为,及时报警以防扩散。 - 杂草检测与清除辅助
自动定位杂草位置,为精准除草机器人或农药喷洒提供坐标。 - 灌溉与土壤监测